Rename nMigen to Amaranth HDL.

This commit is contained in:
whitequark 2021-12-10 05:39:50 +00:00
parent 0b28a97ca0
commit 909a3b8be7
200 changed files with 14493 additions and 14451 deletions

View file

@ -1,9 +1,9 @@
[run] [run]
branch = True branch = True
include = include =
nmigen/* amaranth/*
omit = omit =
nmigen/test/* amaranth/test/*
[report] [report]
exclude_lines = exclude_lines =

2
.gitattributes vendored
View file

@ -1 +1 @@
/nmigen/vendor/* -linguist-vendored /amaranth/vendor/* -linguist-vendored

View file

@ -35,7 +35,7 @@ jobs:
key: ${{ runner.os }}-wasm key: ${{ runner.os }}-wasm
- name: Run tests - name: Run tests
run: | run: |
export NMIGEN_USE_YOSYS=builtin YOSYS=yowasp-yosys SBY=yowasp-sby SMTBMC=yowasp-yosys-smtbmc export AMARANTH_USE_YOSYS=builtin YOSYS=yowasp-yosys SBY=yowasp-sby SMTBMC=yowasp-yosys-smtbmc
export PYTHONWARNINGS=error export PYTHONWARNINGS=error
python -m coverage run -m unittest python -m coverage run -m unittest
codecov codecov
@ -56,7 +56,7 @@ jobs:
run: | run: |
sphinx-build docs docs/_build sphinx-build docs docs/_build
- name: Publish documentation - name: Publish documentation
if: github.event_name == 'push' && github.event.ref == 'refs/heads/master' if: github.event_name == 'push' && github.event.ref == 'refs/heads/main'
uses: JamesIves/github-pages-deploy-action@releases/v3 uses: JamesIves/github-pages-deploy-action@releases/v3
with: with:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View file

@ -7,8 +7,8 @@ this purpose.
COPYRIGHTS and LICENSE COPYRIGHTS and LICENSE
nMigen is licensed under the 2-clause BSD license, which is contained in the Amaranth HDL is licensed under the 2-clause BSD license, which is contained in
LICENSE.txt file. the LICENSE.txt file.
All authors retain copyright ownership of their contributions. All authors retain copyright ownership of their contributions.

View file

@ -1,4 +1,4 @@
Copyright (C) 2019-2020 whitequark Copyright (C) 2019-2021 Amaranth HDL contributors
Copyright (C) 2011-2019 M-Labs Limited Copyright (C) 2011-2019 M-Labs Limited
Redistribution and use in source and binary forms, with or without modification, Redistribution and use in source and binary forms, with or without modification,

View file

@ -1,35 +1,30 @@
# nMigen # Amaranth HDL
## A refreshed Python toolbox for building complex digital hardware The Amaranth project provides an open-source toolchain for developing hardware based on synchronous digital logic using the Python programming language, as well as [evaluation board definitions][amaranth-boards], a [System on Chip toolkit][amaranth-soc], and more. It aims to be easy to learn and use, reduce or eliminate common coding mistakes, and simplify the design of complex hardware with reusable components.
**Although nMigen is incomplete and in active development, it can already be used for real-world designs. The nMigen language (`nmigen.hdl.ast`, `nmigen.hdl.dsl`) will not undergo incompatible changes. The nMigen standard library (`nmigen.lib`) and build system (`nmigen.build`) will undergo minimal changes before their design is finalized.** The Amaranth toolchain consists of the Amaranth hardware definition language, the standard library, the simulator, and the build system, covering all steps of a typical FPGA development workflow. At the same time, it does not restrict the designers choice of tools: existing industry-standard (System)Verilog or VHDL code can be integrated into an Amaranth-based design flow, or, conversely, Amaranth code can be integrated into an existing Verilog-based design flow.
Despite being faster than schematics entry, hardware design with Verilog and VHDL remains tedious and inefficient for several reasons. The event-driven model introduces issues and manual coding that are unnecessary for synchronous circuits, which represent the lion's share of today's logic designs. Counterintuitive arithmetic rules result in steeper learning curves and provide a fertile ground for subtle bugs in designs. Finally, support for procedural generation of logic (metaprogramming) through "generate" statements is very limited and restricts the ways code can be made generic, reused and organized. [amaranth-boards]: https://github.com/amaranth-lang/amaranth-boards
[amaranth-soc]: https://github.com/amaranth-lang/amaranth-soc
To address those issues, we have developed the *nMigen FHDL*, a library that replaces the event-driven paradigm with the notions of combinatorial and synchronous statements, has arithmetic rules that make integers always behave like mathematical integers, and most importantly allows the design's logic to be constructed by a Python program. This last point enables hardware designers to take advantage of the richness of the Python language—object oriented programming, function parameters, generators, operator overloading, libraries, etc.—to build well organized, reusable and elegant designs. The development of Amaranth has been supported by [SymbioticEDA][], [LambdaConcept][], and [ChipEleven][].
Other nMigen libraries are built on FHDL and provide various tools and logic cores. nMigen also contains a simulator that allows test benches to be written in Python. [yosys]: https://yosyshq.net/yosys/
nMigen is based on Migen, a similar Python-based hardware description language. Although Migen works very well in production, its design could be improved in many fundamental ways, and nMigen reimplements Migen concepts from scratch to do so. nMigen also provides an extensive [compatibility layer](#migration-from-migen) that makes it possible to build and simulate most Migen designs unmodified, as well as integrate modules written for Migen and nMigen.
The development of nMigen has been supported by [SymbioticEDA][], [LambdaConcept][], and [ChipEleven][].
[yosys]: http://www.clifford.at/yosys/
[symbioticeda]: https://www.symbioticeda.com/ [symbioticeda]: https://www.symbioticeda.com/
[lambdaconcept]: http://lambdaconcept.com/ [lambdaconcept]: http://lambdaconcept.com/
[chipeleven]: https://chipeleven.com/ [chipeleven]: https://chipeleven.com/
### Introduction ## Introduction
See the [Introduction](https://nmigen.info/nmigen/latest/intro.html) section of the documentation. See the [Introduction](https://amaranth-lang.org/amaranth/latest/intro.html) section of the documentation.
### Installation ## Installation
See the [Installation](https://nmigen.info/nmigen/latest/install.html) section of the documentation. See the [Installation](https://amaranth-lang.org/amaranth/latest/install.html) section of the documentation.
### Supported devices ## Supported devices
nMigen can be used to target any FPGA or ASIC process that accepts behavioral Verilog-2001 as input. It also offers extended support for many FPGA families, providing toolchain integration, abstractions for device-specific primitives, and more. Specifically: Amaranth can be used to target any FPGA or ASIC process that accepts behavioral Verilog-2001 as input. It also offers extended support for many FPGA families, providing toolchain integration, abstractions for device-specific primitives, and more. Specifically:
* Lattice iCE40 (toolchains: **Yosys+nextpnr**, LSE-iCECube2, Synplify-iCECube2); * Lattice iCE40 (toolchains: **Yosys+nextpnr**, LSE-iCECube2, Synplify-iCECube2);
* Lattice MachXO2 (toolchains: Diamond); * Lattice MachXO2 (toolchains: Diamond);
@ -44,22 +39,22 @@ nMigen can be used to target any FPGA or ASIC process that accepts behavioral Ve
FOSS toolchains are listed in **bold**. FOSS toolchains are listed in **bold**.
### Migration from Migen ## Migration from Migen
If you are already familiar with Migen, the good news is that nMigen provides a comprehensive Migen compatibility layer! An existing Migen design can be synthesized and simulated with nMigen in three steps: If you have existing Migen code, you can use a comprehensive Migen compatibility layer provided in Amaranth. An existing Migen design can be synthesized and simulated with Amaranth in three steps:
1. Replace all `from migen import <...>` statements with `from nmigen.compat import <...>`. 1. Replace all `from migen import <...>` statements with `from amaranth.compat import <...>`.
2. Replace every explicit mention of the default `sys` clock domain with the new default `sync` clock domain. E.g. `ClockSignal("sys")` is changed to `ClockSignal("sync")`. 2. Replace every explicit mention of the default `sys` clock domain with the new default `sync` clock domain. E.g. `ClockSignal("sys")` is changed to `ClockSignal("sync")`.
3. Migrate from Migen build/platform system to nMigen build/platform system. nMigen does not provide a build/platform compatibility layer because both the board definition files and the platform abstraction differ too much. 3. Migrate from Migen build/platform system to Amaranth build/platform system. Amaranth does not provide a build/platform compatibility layer because both the board definition files and the platform abstraction differ too much.
Note that nMigen will **not** produce the exact same RTL as Migen did. nMigen has been built to allow you to take advantage of the new and improved functionality it has (such as producing hierarchical RTL) while making migration as painless as possible. Note that Amaranth will **not** produce the exact same RTL as Migen did. Amaranth has been built to allow you to take advantage of the new and improved functionality it has (such as producing hierarchical RTL) while making migration as painless as possible.
Once your design passes verification with nMigen, you can migrate it to the nMigen syntax one module at a time. Migen modules can be added to nMigen modules and vice versa, so there is no restriction on the order of migration, either. Once your design passes verification with Amaranth, you can migrate it to the Amaranth syntax one module at a time. Migen modules can be added to Amaranth modules and vice versa, so there is no restriction on the order of migration, either.
### Community ## Community
nMigen has a dedicated IRC channel, [#nmigen at libera.chat](irc://irc.libera.chat/nmigen). Feel free to join to ask questions about using nMigen or discuss ongoing development of nMigen and its related projects. Amaranth has a dedicated IRC channel, [#amaranth-lang at libera.chat](irc://irc.libera.chat/amaranth-lang). Feel free to join to ask questions about using Amaranth or discuss ongoing development of Amaranth and its related projects.
### License ## License
nMigen is released under the very permissive [two-clause BSD license](LICENSE.txt). Under the terms of this license, you are authorized to use nMigen for closed-source proprietary designs. Amaranth is released under the very permissive [two-clause BSD license](LICENSE.txt). Under the terms of this license, you are authorized to use Amaranth for closed-source proprietary designs.

26
amaranth/__init__.py Normal file
View file

@ -0,0 +1,26 @@
try:
try:
from importlib import metadata as importlib_metadata # py3.8+ stdlib
except ImportError:
import importlib_metadata # py3.7- shim
__version__ = importlib_metadata.version(__package__)
except ImportError:
# No importlib_metadata. This shouldn't normally happen, but some people prefer not installing
# packages via pip at all, instead using PYTHONPATH directly or copying the package files into
# `lib/pythonX.Y/site-packages`. Although not a recommended way, we still try to support it.
__version__ = "unknown" # :nocov:
from .hdl import *
__all__ = [
"Shape", "unsigned", "signed",
"Value", "Const", "C", "Mux", "Cat", "Repl", "Array", "Signal", "ClockSignal", "ResetSignal",
"Module",
"ClockDomain",
"Elaboratable", "Fragment", "Instance",
"Memory",
"Record",
"DomainRenamer", "ResetInserter", "EnableInserter",
]

View file

@ -8,7 +8,7 @@ __all__ = ["build_cxx"]
def build_cxx(*, cxx_sources, output_name, include_dirs, macros): def build_cxx(*, cxx_sources, output_name, include_dirs, macros):
build_dir = tempfile.TemporaryDirectory(prefix="nmigen_cxx_") build_dir = tempfile.TemporaryDirectory(prefix="amaranth_cxx_")
cwd = os.getcwd() cwd = os.getcwd()
try: try:

View file

@ -114,7 +114,7 @@ class YosysBinary:
class _BuiltinYosys(YosysBinary): class _BuiltinYosys(YosysBinary):
YOSYS_PACKAGE = "nmigen_yosys" YOSYS_PACKAGE = "amaranth_yosys"
@classmethod @classmethod
def available(cls): def available(cls):
@ -205,14 +205,14 @@ def find_yosys(requirement):
Raised if required Yosys version is not found. Raised if required Yosys version is not found.
""" """
proxies = [] proxies = []
clauses = os.environ.get("NMIGEN_USE_YOSYS", "system,builtin").split(",") clauses = os.environ.get("AMARANTH_USE_YOSYS", "system,builtin").split(",")
for clause in clauses: for clause in clauses:
if clause == "builtin": if clause == "builtin":
proxies.append(_BuiltinYosys) proxies.append(_BuiltinYosys)
elif clause == "system": elif clause == "system":
proxies.append(_SystemYosys) proxies.append(_SystemYosys)
else: else:
raise YosysError("The NMIGEN_USE_YOSYS environment variable contains " raise YosysError("The AMARANTH_USE_YOSYS environment variable contains "
"an unrecognized clause {!r}" "an unrecognized clause {!r}"
.format(clause)) .format(clause))
for proxy in proxies: for proxy in proxies:
@ -221,9 +221,9 @@ def find_yosys(requirement):
if version is not None and requirement(version): if version is not None and requirement(version):
return proxy return proxy
else: else:
if "NMIGEN_USE_YOSYS" in os.environ: if "AMARANTH_USE_YOSYS" in os.environ:
raise YosysError("Could not find an acceptable Yosys binary. Searched: {}" raise YosysError("Could not find an acceptable Yosys binary. Searched: {}"
.format(", ".join(clauses))) .format(", ".join(clauses)))
else: else:
raise YosysError("Could not find an acceptable Yosys binary. The `nmigen-yosys` PyPI " raise YosysError("Could not find an acceptable Yosys binary. The `amaranth-yosys` PyPI "
"package, if available for this platform, can be used as fallback") "package, if available for this platform, can be used as fallback")

View file

@ -90,6 +90,11 @@ def get_linter_options(filename):
first_line = linecache.getline(filename, 1) first_line = linecache.getline(filename, 1)
if first_line: if first_line:
match = re.match(r"^#\s*nmigen:\s*((?:\w+=\w+\s*)(?:,\s*\w+=\w+\s*)*)\n$", first_line) match = re.match(r"^#\s*nmigen:\s*((?:\w+=\w+\s*)(?:,\s*\w+=\w+\s*)*)\n$", first_line)
if match:
warnings.warn_explicit("Use `# amaranth:` annotation instead of `# nmigen:`",
DeprecationWarning, filename, 1)
else:
match = re.match(r"^#\s*amaranth:\s*((?:\w+=\w+\s*)(?:,\s*\w+=\w+\s*)*)\n$", first_line)
if match: if match:
return dict(map(lambda s: s.strip().split("=", 2), match.group(1).split(","))) return dict(map(lambda s: s.strip().split("=", 2), match.group(1).split(",")))
return dict() return dict()

2
amaranth/asserts.py Normal file
View file

@ -0,0 +1,2 @@
from .hdl.ast import AnyConst, AnySeq, Assert, Assume, Cover
from .hdl.ast import Past, Stable, Rose, Fell, Initial

View file

41
amaranth/back/cxxrtl.py Normal file
View file

@ -0,0 +1,41 @@
from .._toolchain.yosys import *
from . import rtlil
__all__ = ["YosysError", "convert", "convert_fragment"]
def _convert_rtlil_text(rtlil_text, black_boxes, *, src_loc_at=0):
if black_boxes is not None:
if not isinstance(black_boxes, dict):
raise TypeError("CXXRTL black boxes must be a dictionary, not {!r}"
.format(black_boxes))
for box_name, box_source in black_boxes.items():
if not isinstance(box_name, str):
raise TypeError("CXXRTL black box name must be a string, not {!r}"
.format(box_name))
if not isinstance(box_source, str):
raise TypeError("CXXRTL black box source code must be a string, not {!r}"
.format(box_source))
yosys = find_yosys(lambda ver: ver >= (0, 9, 3468))
script = []
if black_boxes is not None:
for box_name, box_source in black_boxes.items():
script.append("read_ilang <<rtlil\n{}\nrtlil".format(box_source))
script.append("read_ilang <<rtlil\n{}\nrtlil".format(rtlil_text))
script.append("delete w:$verilog_initial_trigger")
script.append("write_cxxrtl")
return yosys.run(["-q", "-"], "\n".join(script), src_loc_at=1 + src_loc_at)
def convert_fragment(*args, black_boxes=None, **kwargs):
rtlil_text, name_map = rtlil.convert_fragment(*args, **kwargs)
return _convert_rtlil_text(rtlil_text, black_boxes, src_loc_at=1), name_map
def convert(*args, black_boxes=None, **kwargs):
rtlil_text = rtlil.convert(*args, **kwargs)
return _convert_rtlil_text(rtlil_text, black_boxes, src_loc_at=1)

11
amaranth/back/pysim.py Normal file
View file

@ -0,0 +1,11 @@
import warnings
from ..sim import *
__all__ = ["Settle", "Delay", "Tick", "Passive", "Active", "Simulator"]
# TODO(amaranth-0.4): remove
warnings.warn("instead of amaranth.back.pysim.*, use amaranth.sim.*",
DeprecationWarning, stacklevel=2)

1056
amaranth/back/rtlil.py Normal file

File diff suppressed because it is too large Load diff

61
amaranth/back/verilog.py Normal file
View file

@ -0,0 +1,61 @@
from .._toolchain.yosys import *
from . import rtlil
__all__ = ["YosysError", "convert", "convert_fragment"]
def _convert_rtlil_text(rtlil_text, *, strip_internal_attrs=False, write_verilog_opts=()):
# this version requirement needs to be synchronized with the one in setup.py!
yosys = find_yosys(lambda ver: ver >= (0, 9))
yosys_version = yosys.version()
script = []
script.append("read_ilang <<rtlil\n{}\nrtlil".format(rtlil_text))
if yosys_version >= (0, 9, 3468):
# Yosys >=0.9+3468 (since commit 128522f1) emits the workaround for the `always @*`
# initial scheduling issue on its own.
script.append("delete w:$verilog_initial_trigger")
if yosys_version >= (0, 9, 3527):
# Yosys >=0.9+3527 (since commit 656ee70f) supports the `-nomux` option for the `proc`
# script pass. Because the individual `proc_*` passes are not a stable interface,
# `proc -nomux` is used instead, if available.
script.append("proc -nomux")
else:
# On earlier versions, use individual `proc_*` passes; this is a known range of Yosys
# versions and we know it's compatible with what Amaranth does.
script.append("proc_init")
script.append("proc_arst")
script.append("proc_dff")
script.append("proc_clean")
script.append("memory_collect")
if strip_internal_attrs:
attr_map = []
attr_map.append("-remove generator")
attr_map.append("-remove top")
attr_map.append("-remove src")
attr_map.append("-remove amaranth.hierarchy")
attr_map.append("-remove amaranth.decoding")
script.append("attrmap {}".format(" ".join(attr_map)))
script.append("attrmap -modattr {}".format(" ".join(attr_map)))
script.append("write_verilog -norename {}".format(" ".join(write_verilog_opts)))
return yosys.run(["-q", "-"], "\n".join(script),
# At the moment, Yosys always shows a warning indicating that not all processes can be
# translated to Verilog. We carefully emit only the processes that *can* be translated, and
# squash this warning. Once Yosys' write_verilog pass is fixed, we should remove this.
ignore_warnings=True)
def convert_fragment(*args, strip_internal_attrs=False, **kwargs):
rtlil_text, name_map = rtlil.convert_fragment(*args, **kwargs)
return _convert_rtlil_text(rtlil_text, strip_internal_attrs=strip_internal_attrs), name_map
def convert(*args, strip_internal_attrs=False, **kwargs):
rtlil_text = rtlil.convert(*args, **kwargs)
return _convert_rtlil_text(rtlil_text, strip_internal_attrs=strip_internal_attrs)

View file

@ -0,0 +1,3 @@
from .dsl import *
from .res import ResourceError
from .plat import *

256
amaranth/build/dsl.py Normal file
View file

@ -0,0 +1,256 @@
from collections import OrderedDict
__all__ = ["Pins", "PinsN", "DiffPairs", "DiffPairsN",
"Attrs", "Clock", "Subsignal", "Resource", "Connector"]
class Pins:
def __init__(self, names, *, dir="io", invert=False, conn=None, assert_width=None):
if not isinstance(names, str):
raise TypeError("Names must be a whitespace-separated string, not {!r}"
.format(names))
names = names.split()
if conn is not None:
conn_name, conn_number = conn
if not (isinstance(conn_name, str) and isinstance(conn_number, (int, str))):
raise TypeError("Connector must be None or a pair of string (connector name) and "
"integer/string (connector number), not {!r}"
.format(conn))
names = ["{}_{}:{}".format(conn_name, conn_number, name) for name in names]
if dir not in ("i", "o", "io", "oe"):
raise TypeError("Direction must be one of \"i\", \"o\", \"oe\", or \"io\", not {!r}"
.format(dir))
if assert_width is not None and len(names) != assert_width:
raise AssertionError("{} names are specified ({}), but {} names are expected"
.format(len(names), " ".join(names), assert_width))
self.names = names
self.dir = dir
self.invert = bool(invert)
def __len__(self):
return len(self.names)
def __iter__(self):
return iter(self.names)
def map_names(self, mapping, resource):
mapped_names = []
for name in self.names:
while ":" in name:
if name not in mapping:
raise NameError("Resource {!r} refers to nonexistent connector pin {}"
.format(resource, name))
name = mapping[name]
mapped_names.append(name)
return mapped_names
def __repr__(self):
return "(pins{} {} {})".format("-n" if self.invert else "",
self.dir, " ".join(self.names))
def PinsN(*args, **kwargs):
return Pins(*args, invert=True, **kwargs)
class DiffPairs:
def __init__(self, p, n, *, dir="io", invert=False, conn=None, assert_width=None):
self.p = Pins(p, dir=dir, conn=conn, assert_width=assert_width)
self.n = Pins(n, dir=dir, conn=conn, assert_width=assert_width)
if len(self.p.names) != len(self.n.names):
raise TypeError("Positive and negative pins must have the same width, but {!r} "
"and {!r} do not"
.format(self.p, self.n))
self.dir = dir
self.invert = bool(invert)
def __len__(self):
return len(self.p.names)
def __iter__(self):
return zip(self.p.names, self.n.names)
def __repr__(self):
return "(diffpairs{} {} (p {}) (n {}))".format("-n" if self.invert else "",
self.dir, " ".join(self.p.names), " ".join(self.n.names))
def DiffPairsN(*args, **kwargs):
return DiffPairs(*args, invert=True, **kwargs)
class Attrs(OrderedDict):
def __init__(self, **attrs):
for key, value in attrs.items():
if not (value is None or isinstance(value, (str, int)) or hasattr(value, "__call__")):
raise TypeError("Value of attribute {} must be None, int, str, or callable, "
"not {!r}"
.format(key, value))
super().__init__(**attrs)
def __repr__(self):
items = []
for key, value in self.items():
if value is None:
items.append("!" + key)
else:
items.append(key + "=" + repr(value))
return "(attrs {})".format(" ".join(items))
class Clock:
def __init__(self, frequency):
if not isinstance(frequency, (float, int)):
raise TypeError("Clock frequency must be a number")
self.frequency = float(frequency)
@property
def period(self):
return 1 / self.frequency
def __repr__(self):
return "(clock {})".format(self.frequency)
class Subsignal:
def __init__(self, name, *args):
self.name = name
self.ios = []
self.attrs = Attrs()
self.clock = None
if not args:
raise ValueError("Missing I/O constraints")
for arg in args:
if isinstance(arg, (Pins, DiffPairs)):
if not self.ios:
self.ios.append(arg)
else:
raise TypeError("Pins and DiffPairs are incompatible with other location or "
"subsignal constraints, but {!r} appears after {!r}"
.format(arg, self.ios[-1]))
elif isinstance(arg, Subsignal):
if not self.ios or isinstance(self.ios[-1], Subsignal):
self.ios.append(arg)
else:
raise TypeError("Subsignal is incompatible with location constraints, but "
"{!r} appears after {!r}"
.format(arg, self.ios[-1]))
elif isinstance(arg, Attrs):
self.attrs.update(arg)
elif isinstance(arg, Clock):
if self.ios and isinstance(self.ios[-1], (Pins, DiffPairs)):
if self.clock is None:
self.clock = arg
else:
raise ValueError("Clock constraint can be applied only once")
else:
raise TypeError("Clock constraint can only be applied to Pins or DiffPairs, "
"not {!r}"
.format(self.ios[-1]))
else:
raise TypeError("Constraint must be one of Pins, DiffPairs, Subsignal, Attrs, "
"or Clock, not {!r}"
.format(arg))
def _content_repr(self):
parts = []
for io in self.ios:
parts.append(repr(io))
if self.clock is not None:
parts.append(repr(self.clock))
if self.attrs:
parts.append(repr(self.attrs))
return " ".join(parts)
def __repr__(self):
return "(subsignal {} {})".format(self.name, self._content_repr())
class Resource(Subsignal):
@classmethod
def family(cls, name_or_number, number=None, *, ios, default_name, name_suffix=""):
# This constructor accepts two different forms:
# 1. Number-only form:
# Resource.family(0, default_name="name", ios=[Pins("A0 A1")])
# 2. Name-and-number (name override) form:
# Resource.family("override", 0, default_name="name", ios=...)
# This makes it easier to build abstractions for resources, e.g. an SPIResource abstraction
# could simply delegate to `Resource.family(*args, default_name="spi", ios=ios)`.
# The name_suffix argument is meant to support creating resources with
# similar names, such as spi_flash, spi_flash_2x, etc.
if name_suffix: # Only add "_" if we actually have a suffix.
name_suffix = "_" + name_suffix
if number is None: # name_or_number is number
return cls(default_name + name_suffix, name_or_number, *ios)
else: # name_or_number is name
return cls(name_or_number + name_suffix, number, *ios)
def __init__(self, name, number, *args):
super().__init__(name, *args)
self.number = number
def __repr__(self):
return "(resource {} {} {})".format(self.name, self.number, self._content_repr())
class Connector:
def __init__(self, name, number, io, *, conn=None):
self.name = name
self.number = number
mapping = OrderedDict()
if isinstance(io, dict):
for conn_pin, plat_pin in io.items():
if not isinstance(conn_pin, str):
raise TypeError("Connector pin name must be a string, not {!r}"
.format(conn_pin))
if not isinstance(plat_pin, str):
raise TypeError("Platform pin name must be a string, not {!r}"
.format(plat_pin))
mapping[conn_pin] = plat_pin
elif isinstance(io, str):
for conn_pin, plat_pin in enumerate(io.split(), start=1):
if plat_pin == "-":
continue
mapping[str(conn_pin)] = plat_pin
else:
raise TypeError("Connector I/Os must be a dictionary or a string, not {!r}"
.format(io))
if conn is not None:
conn_name, conn_number = conn
if not (isinstance(conn_name, str) and isinstance(conn_number, (int, str))):
raise TypeError("Connector must be None or a pair of string (connector name) and "
"integer/string (connector number), not {!r}"
.format(conn))
for conn_pin, plat_pin in mapping.items():
mapping[conn_pin] = "{}_{}:{}".format(conn_name, conn_number, plat_pin)
self.mapping = mapping
def __repr__(self):
return "(connector {} {} {})".format(self.name, self.number,
" ".join("{}=>{}".format(conn, plat)
for conn, plat in self.mapping.items()))
def __len__(self):
return len(self.mapping)
def __iter__(self):
for conn_pin, plat_pin in self.mapping.items():
yield "{}_{}:{}".format(self.name, self.number, conn_pin), plat_pin

457
amaranth/build/plat.py Normal file
View file

@ -0,0 +1,457 @@
from collections import OrderedDict
from abc import ABCMeta, abstractmethod, abstractproperty
import os
import textwrap
import re
import jinja2
from .. import __version__
from .._toolchain import *
from ..hdl import *
from ..hdl.xfrm import SampleLowerer, DomainLowerer
from ..lib.cdc import ResetSynchronizer
from ..back import rtlil, verilog
from .res import *
from .run import *
__all__ = ["Platform", "TemplatedPlatform"]
class Platform(ResourceManager, metaclass=ABCMeta):
resources = abstractproperty()
connectors = abstractproperty()
default_clk = None
default_rst = None
required_tools = abstractproperty()
def __init__(self):
super().__init__(self.resources, self.connectors)
self.extra_files = OrderedDict()
self._prepared = False
@property
def default_clk_constraint(self):
if self.default_clk is None:
raise AttributeError("Platform '{}' does not define a default clock"
.format(type(self).__name__))
return self.lookup(self.default_clk).clock
@property
def default_clk_frequency(self):
constraint = self.default_clk_constraint
if constraint is None:
raise AttributeError("Platform '{}' does not constrain its default clock"
.format(type(self).__name__))
return constraint.frequency
def add_file(self, filename, content):
if not isinstance(filename, str):
raise TypeError("File name must be a string, not {!r}"
.format(filename))
if hasattr(content, "read"):
content = content.read()
elif not isinstance(content, (str, bytes)):
raise TypeError("File contents must be str, bytes, or a file-like object, not {!r}"
.format(content))
if filename in self.extra_files:
if self.extra_files[filename] != content:
raise ValueError("File {!r} already exists"
.format(filename))
else:
self.extra_files[filename] = content
def iter_files(self, *suffixes):
for filename in self.extra_files:
if filename.endswith(suffixes):
yield filename
@property
def _deprecated_toolchain_env_var(self):
return f"NMIGEN_ENV_{self.toolchain}"
@property
def _toolchain_env_var(self):
return f"AMARANTH_ENV_{self.toolchain}"
def build(self, elaboratable, name="top",
build_dir="build", do_build=True,
program_opts=None, do_program=False,
**kwargs):
# The following code performs a best-effort check for presence of required tools upfront,
# before performing any build actions, to provide a better diagnostic. It does not handle
# several corner cases:
# 1. `require_tool` does not source toolchain environment scripts, so if such a script
# is used, the check is skipped, and `execute_local()` may fail;
# 2. if the design is not built (do_build=False), most of the tools are not required and
# in fact might not be available if the design will be built manually with a different
# environment script specified, or on a different machine; however, Yosys is required
# by virtually every platform anyway, to provide debug Verilog output, and `prepare()`
# may fail.
# This is OK because even if `require_tool` succeeds, the toolchain might be broken anyway.
# The check only serves to catch common errors earlier.
if do_build and (self._deprecated_toolchain_env_var not in os.environ or
self._toolchain_env_var not in os.environ):
for tool in self.required_tools:
require_tool(tool)
plan = self.prepare(elaboratable, name, **kwargs)
if not do_build:
return plan
products = plan.execute_local(build_dir)
if not do_program:
return products
self.toolchain_program(products, name, **(program_opts or {}))
def has_required_tools(self):
if (self._deprecated_toolchain_env_var in os.environ or
self._toolchain_env_var in os.environ):
return True
return all(has_tool(name) for name in self.required_tools)
def create_missing_domain(self, name):
# Simple instantiation of a clock domain driven directly by the board clock and reset.
# This implementation uses a single ResetSynchronizer to ensure that:
# * an external reset is definitely synchronized to the system clock;
# * release of power-on reset, which is inherently asynchronous, is synchronized to
# the system clock.
# Many device families provide advanced primitives for tackling reset. If these exist,
# they should be used instead.
if name == "sync" and self.default_clk is not None:
clk_i = self.request(self.default_clk).i
if self.default_rst is not None:
rst_i = self.request(self.default_rst).i
else:
rst_i = Const(0)
m = Module()
m.domains += ClockDomain("sync")
m.d.comb += ClockSignal("sync").eq(clk_i)
m.submodules.reset_sync = ResetSynchronizer(rst_i, domain="sync")
return m
def prepare(self, elaboratable, name="top", **kwargs):
assert not self._prepared
self._prepared = True
fragment = Fragment.get(elaboratable, self)
fragment = SampleLowerer()(fragment)
fragment._propagate_domains(self.create_missing_domain, platform=self)
fragment = DomainLowerer()(fragment)
def add_pin_fragment(pin, pin_fragment):
pin_fragment = Fragment.get(pin_fragment, self)
if not isinstance(pin_fragment, Instance):
pin_fragment.flatten = True
fragment.add_subfragment(pin_fragment, name="pin_{}".format(pin.name))
for pin, port, attrs, invert in self.iter_single_ended_pins():
if pin.dir == "i":
add_pin_fragment(pin, self.get_input(pin, port, attrs, invert))
if pin.dir == "o":
add_pin_fragment(pin, self.get_output(pin, port, attrs, invert))
if pin.dir == "oe":
add_pin_fragment(pin, self.get_tristate(pin, port, attrs, invert))
if pin.dir == "io":
add_pin_fragment(pin, self.get_input_output(pin, port, attrs, invert))
for pin, port, attrs, invert in self.iter_differential_pins():
if pin.dir == "i":
add_pin_fragment(pin, self.get_diff_input(pin, port, attrs, invert))
if pin.dir == "o":
add_pin_fragment(pin, self.get_diff_output(pin, port, attrs, invert))
if pin.dir == "oe":
add_pin_fragment(pin, self.get_diff_tristate(pin, port, attrs, invert))
if pin.dir == "io":
add_pin_fragment(pin, self.get_diff_input_output(pin, port, attrs, invert))
fragment._propagate_ports(ports=self.iter_ports(), all_undef_as_ports=False)
return self.toolchain_prepare(fragment, name, **kwargs)
@abstractmethod
def toolchain_prepare(self, fragment, name, **kwargs):
"""
Convert the ``fragment`` and constraints recorded in this :class:`Platform` into
a :class:`BuildPlan`.
"""
raise NotImplementedError # :nocov:
def toolchain_program(self, products, name, **kwargs):
"""
Extract bitstream for fragment ``name`` from ``products`` and download it to a target.
"""
raise NotImplementedError("Platform '{}' does not support programming"
.format(type(self).__name__))
def _check_feature(self, feature, pin, attrs, valid_xdrs, valid_attrs):
if len(valid_xdrs) == 0:
raise NotImplementedError("Platform '{}' does not support {}"
.format(type(self).__name__, feature))
elif pin.xdr not in valid_xdrs:
raise NotImplementedError("Platform '{}' does not support {} for XDR {}"
.format(type(self).__name__, feature, pin.xdr))
if not valid_attrs and attrs:
raise NotImplementedError("Platform '{}' does not support attributes for {}"
.format(type(self).__name__, feature))
@staticmethod
def _invert_if(invert, value):
if invert:
return ~value
else:
return value
def get_input(self, pin, port, attrs, invert):
self._check_feature("single-ended input", pin, attrs,
valid_xdrs=(0,), valid_attrs=None)
m = Module()
m.d.comb += pin.i.eq(self._invert_if(invert, port))
return m
def get_output(self, pin, port, attrs, invert):
self._check_feature("single-ended output", pin, attrs,
valid_xdrs=(0,), valid_attrs=None)
m = Module()
m.d.comb += port.eq(self._invert_if(invert, pin.o))
return m
def get_tristate(self, pin, port, attrs, invert):
self._check_feature("single-ended tristate", pin, attrs,
valid_xdrs=(0,), valid_attrs=None)
m = Module()
m.submodules += Instance("$tribuf",
p_WIDTH=pin.width,
i_EN=pin.oe,
i_A=self._invert_if(invert, pin.o),
o_Y=port,
)
return m
def get_input_output(self, pin, port, attrs, invert):
self._check_feature("single-ended input/output", pin, attrs,
valid_xdrs=(0,), valid_attrs=None)
m = Module()
m.submodules += Instance("$tribuf",
p_WIDTH=pin.width,
i_EN=pin.oe,
i_A=self._invert_if(invert, pin.o),
o_Y=port,
)
m.d.comb += pin.i.eq(self._invert_if(invert, port))
return m
def get_diff_input(self, pin, port, attrs, invert):
self._check_feature("differential input", pin, attrs,
valid_xdrs=(), valid_attrs=None)
def get_diff_output(self, pin, port, attrs, invert):
self._check_feature("differential output", pin, attrs,
valid_xdrs=(), valid_attrs=None)
def get_diff_tristate(self, pin, port, attrs, invert):
self._check_feature("differential tristate", pin, attrs,
valid_xdrs=(), valid_attrs=None)
def get_diff_input_output(self, pin, port, attrs, invert):
self._check_feature("differential input/output", pin, attrs,
valid_xdrs=(), valid_attrs=None)
class TemplatedPlatform(Platform):
toolchain = abstractproperty()
file_templates = abstractproperty()
command_templates = abstractproperty()
build_script_templates = {
"build_{{name}}.sh": """
# {{autogenerated}}
set -e{{verbose("x")}}
[ -n "${{platform._deprecated_toolchain_env_var}}" ] && . "${{platform._deprecated_toolchain_env_var}}"
[ -n "${{platform._toolchain_env_var}}" ] && . "${{platform._toolchain_env_var}}"
{{emit_commands("sh")}}
""",
"build_{{name}}.bat": """
@rem {{autogenerated}}
{{quiet("@echo off")}}
if defined {{platform._deprecated_toolchain_env_var}} call %{{platform._deprecated_toolchain_env_var}}%
if defined {{platform._toolchain_env_var}} call %{{platform._toolchain_env_var}}%
{{emit_commands("bat")}}
""",
}
def iter_clock_constraints(self):
for net_signal, port_signal, frequency in super().iter_clock_constraints():
# Skip any clock constraints placed on signals that are never used in the design.
# Otherwise, it will cause a crash in the vendor platform if it supports clock
# constraints on non-port nets.
if net_signal not in self._name_map:
continue
yield net_signal, port_signal, frequency
def toolchain_prepare(self, fragment, name, **kwargs):
# Restrict the name of the design to a strict alphanumeric character set. Platforms will
# interpolate the name of the design in many different contexts: filesystem paths, Python
# scripts, Tcl scripts, ad-hoc constraint files, and so on. It is not practical to add
# escaping code that handles every one of their edge cases, so make sure we never hit them
# in the first place.
invalid_char = re.match(r"[^A-Za-z0-9_]", name)
if invalid_char:
raise ValueError("Design name {!r} contains invalid character {!r}; only alphanumeric "
"characters are valid in design names"
.format(name, invalid_char.group(0)))
# This notice serves a dual purpose: to explain that the file is autogenerated,
# and to incorporate the Amaranth version into generated code.
autogenerated = "Automatically generated by Amaranth {}. Do not edit.".format(__version__)
rtlil_text, self._name_map = rtlil.convert_fragment(fragment, name=name)
def emit_rtlil():
return rtlil_text
def emit_verilog(opts=()):
return verilog._convert_rtlil_text(rtlil_text,
strip_internal_attrs=True, write_verilog_opts=opts)
def emit_debug_verilog(opts=()):
return verilog._convert_rtlil_text(rtlil_text,
strip_internal_attrs=False, write_verilog_opts=opts)
def emit_commands(syntax):
commands = []
for name in self.required_tools:
env_var = tool_env_var(name)
if syntax == "sh":
template = ": ${{{env_var}:={name}}}"
elif syntax == "bat":
template = \
"if [%{env_var}%] equ [\"\"] set {env_var}=\n" \
"if [%{env_var}%] equ [] set {env_var}={name}"
else:
assert False
commands.append(template.format(env_var=env_var, name=name))
for index, command_tpl in enumerate(self.command_templates):
command = render(command_tpl, origin="<command#{}>".format(index + 1),
syntax=syntax)
command = re.sub(r"\s+", " ", command)
if syntax == "sh":
commands.append(command)
elif syntax == "bat":
commands.append(command + " || exit /b")
else:
assert False
return "\n".join(commands)
def get_override(var):
deprecated_var_env = "NMIGEN_{}".format(var)
var_env = "AMARANTH_{}".format(var)
if deprecated_var_env in os.environ or var_env in os.environ:
# On Windows, there is no way to define an "empty but set" variable; it is tempting
# to use a quoted empty string, but it doesn't do what one would expect. Recognize
# this as a useful pattern anyway, and treat `set VAR=""` on Windows the same way
# `export VAR=` is treated on Linux.
if var_env in os.environ:
var_env_value = os.environ[var_env]
elif deprecated_var_env in os.environ:
var_env_value = os.environ[deprecated_var_env]
return re.sub(r'^\"\"$', "", var_env_value)
elif var in kwargs:
if isinstance(kwargs[var], str):
return textwrap.dedent(kwargs[var]).strip()
else:
return kwargs[var]
else:
return jinja2.Undefined(name=var)
@jinja2.contextfunction
def invoke_tool(context, name):
env_var = tool_env_var(name)
if context.parent["syntax"] == "sh":
return "\"${}\"".format(env_var)
elif context.parent["syntax"] == "bat":
return "%{}%".format(env_var)
else:
assert False
def options(opts):
if isinstance(opts, str):
return opts
else:
return " ".join(opts)
def hierarchy(signal, separator):
return separator.join(self._name_map[signal][1:])
def ascii_escape(string):
def escape_one(match):
if match.group(1) is None:
return match.group(2)
else:
return "_{:02x}_".format(ord(match.group(1)[0]))
return "".join(escape_one(m) for m in re.finditer(r"([^A-Za-z0-9_])|(.)", string))
def tcl_escape(string):
return "{" + re.sub(r"([{}\\])", r"\\\1", string) + "}"
def tcl_quote(string):
return '"' + re.sub(r"([$[\\])", r"\\\1", string) + '"'
def verbose(arg):
if get_override("verbose"):
return arg
else:
return jinja2.Undefined(name="quiet")
def quiet(arg):
if get_override("verbose"):
return jinja2.Undefined(name="quiet")
else:
return arg
def render(source, origin, syntax=None):
try:
source = textwrap.dedent(source).strip()
compiled = jinja2.Template(source,
trim_blocks=True, lstrip_blocks=True, undefined=jinja2.StrictUndefined)
compiled.environment.filters["options"] = options
compiled.environment.filters["hierarchy"] = hierarchy
compiled.environment.filters["ascii_escape"] = ascii_escape
compiled.environment.filters["tcl_escape"] = tcl_escape
compiled.environment.filters["tcl_quote"] = tcl_quote
except jinja2.TemplateSyntaxError as e:
e.args = ("{} (at {}:{})".format(e.message, origin, e.lineno),)
raise
return compiled.render({
"name": name,
"platform": self,
"emit_rtlil": emit_rtlil,
"emit_verilog": emit_verilog,
"emit_debug_verilog": emit_debug_verilog,
"emit_commands": emit_commands,
"syntax": syntax,
"invoke_tool": invoke_tool,
"get_override": get_override,
"verbose": verbose,
"quiet": quiet,
"autogenerated": autogenerated,
})
plan = BuildPlan(script="build_{}".format(name))
for filename_tpl, content_tpl in self.file_templates.items():
plan.add_file(render(filename_tpl, origin=filename_tpl),
render(content_tpl, origin=content_tpl))
for filename, content in self.extra_files.items():
plan.add_file(filename, content)
return plan

256
amaranth/build/res.py Normal file
View file

@ -0,0 +1,256 @@
from collections import OrderedDict
from ..hdl.ast import *
from ..hdl.rec import *
from ..lib.io import *
from .dsl import *
__all__ = ["ResourceError", "ResourceManager"]
class ResourceError(Exception):
pass
class ResourceManager:
def __init__(self, resources, connectors):
self.resources = OrderedDict()
self._requested = OrderedDict()
self._phys_reqd = OrderedDict()
self.connectors = OrderedDict()
self._conn_pins = OrderedDict()
# Constraint lists
self._ports = []
self._clocks = SignalDict()
self.add_resources(resources)
self.add_connectors(connectors)
def add_resources(self, resources):
for res in resources:
if not isinstance(res, Resource):
raise TypeError("Object {!r} is not a Resource".format(res))
if (res.name, res.number) in self.resources:
raise NameError("Trying to add {!r}, but {!r} has the same name and number"
.format(res, self.resources[res.name, res.number]))
self.resources[res.name, res.number] = res
def add_connectors(self, connectors):
for conn in connectors:
if not isinstance(conn, Connector):
raise TypeError("Object {!r} is not a Connector".format(conn))
if (conn.name, conn.number) in self.connectors:
raise NameError("Trying to add {!r}, but {!r} has the same name and number"
.format(conn, self.connectors[conn.name, conn.number]))
self.connectors[conn.name, conn.number] = conn
for conn_pin, plat_pin in conn:
assert conn_pin not in self._conn_pins
self._conn_pins[conn_pin] = plat_pin
def lookup(self, name, number=0):
if (name, number) not in self.resources:
raise ResourceError("Resource {}#{} does not exist"
.format(name, number))
return self.resources[name, number]
def request(self, name, number=0, *, dir=None, xdr=None):
resource = self.lookup(name, number)
if (resource.name, resource.number) in self._requested:
raise ResourceError("Resource {}#{} has already been requested"
.format(name, number))
def merge_options(subsignal, dir, xdr):
if isinstance(subsignal.ios[0], Subsignal):
if dir is None:
dir = dict()
if xdr is None:
xdr = dict()
if not isinstance(dir, dict):
raise TypeError("Directions must be a dict, not {!r}, because {!r} "
"has subsignals"
.format(dir, subsignal))
if not isinstance(xdr, dict):
raise TypeError("Data rate must be a dict, not {!r}, because {!r} "
"has subsignals"
.format(xdr, subsignal))
for sub in subsignal.ios:
sub_dir = dir.get(sub.name, None)
sub_xdr = xdr.get(sub.name, None)
dir[sub.name], xdr[sub.name] = merge_options(sub, sub_dir, sub_xdr)
else:
if dir is None:
dir = subsignal.ios[0].dir
if xdr is None:
xdr = 0
if dir not in ("i", "o", "oe", "io", "-"):
raise TypeError("Direction must be one of \"i\", \"o\", \"oe\", \"io\", "
"or \"-\", not {!r}"
.format(dir))
if dir != subsignal.ios[0].dir and \
not (subsignal.ios[0].dir == "io" or dir == "-"):
raise ValueError("Direction of {!r} cannot be changed from \"{}\" to \"{}\"; "
"direction can be changed from \"io\" to \"i\", \"o\", or "
"\"oe\", or from anything to \"-\""
.format(subsignal.ios[0], subsignal.ios[0].dir, dir))
if not isinstance(xdr, int) or xdr < 0:
raise ValueError("Data rate of {!r} must be a non-negative integer, not {!r}"
.format(subsignal.ios[0], xdr))
return dir, xdr
def resolve(resource, dir, xdr, name, attrs):
for attr_key, attr_value in attrs.items():
if hasattr(attr_value, "__call__"):
attr_value = attr_value(self)
assert attr_value is None or isinstance(attr_value, str)
if attr_value is None:
del attrs[attr_key]
else:
attrs[attr_key] = attr_value
if isinstance(resource.ios[0], Subsignal):
fields = OrderedDict()
for sub in resource.ios:
fields[sub.name] = resolve(sub, dir[sub.name], xdr[sub.name],
name="{}__{}".format(name, sub.name),
attrs={**attrs, **sub.attrs})
return Record([
(f_name, f.layout) for (f_name, f) in fields.items()
], fields=fields, name=name)
elif isinstance(resource.ios[0], (Pins, DiffPairs)):
phys = resource.ios[0]
if isinstance(phys, Pins):
phys_names = phys.names
port = Record([("io", len(phys))], name=name)
if isinstance(phys, DiffPairs):
phys_names = []
record_fields = []
if not self.should_skip_port_component(None, attrs, "p"):
phys_names += phys.p.names
record_fields.append(("p", len(phys)))
if not self.should_skip_port_component(None, attrs, "n"):
phys_names += phys.n.names
record_fields.append(("n", len(phys)))
port = Record(record_fields, name=name)
if dir == "-":
pin = None
else:
pin = Pin(len(phys), dir, xdr=xdr, name=name)
for phys_name in phys_names:
if phys_name in self._phys_reqd:
raise ResourceError("Resource component {} uses physical pin {}, but it "
"is already used by resource component {} that was "
"requested earlier"
.format(name, phys_name, self._phys_reqd[phys_name]))
self._phys_reqd[phys_name] = name
self._ports.append((resource, pin, port, attrs))
if pin is not None and resource.clock is not None:
self.add_clock_constraint(pin.i, resource.clock.frequency)
return pin if pin is not None else port
else:
assert False # :nocov:
value = resolve(resource,
*merge_options(resource, dir, xdr),
name="{}_{}".format(resource.name, resource.number),
attrs=resource.attrs)
self._requested[resource.name, resource.number] = value
return value
def iter_single_ended_pins(self):
for res, pin, port, attrs in self._ports:
if pin is None:
continue
if isinstance(res.ios[0], Pins):
yield pin, port, attrs, res.ios[0].invert
def iter_differential_pins(self):
for res, pin, port, attrs in self._ports:
if pin is None:
continue
if isinstance(res.ios[0], DiffPairs):
yield pin, port, attrs, res.ios[0].invert
def should_skip_port_component(self, port, attrs, component):
return False
def iter_ports(self):
for res, pin, port, attrs in self._ports:
if isinstance(res.ios[0], Pins):
if not self.should_skip_port_component(port, attrs, "io"):
yield port.io
elif isinstance(res.ios[0], DiffPairs):
if not self.should_skip_port_component(port, attrs, "p"):
yield port.p
if not self.should_skip_port_component(port, attrs, "n"):
yield port.n
else:
assert False
def iter_port_constraints(self):
for res, pin, port, attrs in self._ports:
if isinstance(res.ios[0], Pins):
if not self.should_skip_port_component(port, attrs, "io"):
yield port.io.name, res.ios[0].map_names(self._conn_pins, res), attrs
elif isinstance(res.ios[0], DiffPairs):
if not self.should_skip_port_component(port, attrs, "p"):
yield port.p.name, res.ios[0].p.map_names(self._conn_pins, res), attrs
if not self.should_skip_port_component(port, attrs, "n"):
yield port.n.name, res.ios[0].n.map_names(self._conn_pins, res), attrs
else:
assert False
def iter_port_constraints_bits(self):
for port_name, pin_names, attrs in self.iter_port_constraints():
if len(pin_names) == 1:
yield port_name, pin_names[0], attrs
else:
for bit, pin_name in enumerate(pin_names):
yield "{}[{}]".format(port_name, bit), pin_name, attrs
def add_clock_constraint(self, clock, frequency):
if not isinstance(clock, Signal):
raise TypeError("Object {!r} is not a Signal".format(clock))
if not isinstance(frequency, (int, float)):
raise TypeError("Frequency must be a number, not {!r}".format(frequency))
if clock in self._clocks:
raise ValueError("Cannot add clock constraint on {!r}, which is already constrained "
"to {} Hz"
.format(clock, self._clocks[clock]))
else:
self._clocks[clock] = float(frequency)
def iter_clock_constraints(self):
# Back-propagate constraints through the input buffer. For clock constraints on pins
# (the majority of cases), toolchains work better if the constraint is defined on the pin
# and not on the buffered internal net; and if the toolchain is advanced enough that
# it considers clock phase and delay of the input buffer, it is *necessary* to define
# the constraint on the pin to match the designer's expectation of phase being referenced
# to the pin.
#
# Constraints on nets with no corresponding input pin (e.g. PLL or SERDES outputs) are not
# affected.
pin_i_to_port = SignalDict()
for res, pin, port, attrs in self._ports:
if hasattr(pin, "i"):
if isinstance(res.ios[0], Pins):
pin_i_to_port[pin.i] = port.io
elif isinstance(res.ios[0], DiffPairs):
pin_i_to_port[pin.i] = port.p
else:
assert False
for net_signal, frequency in self._clocks.items():
port_signal = pin_i_to_port.get(net_signal)
yield net_signal, port_signal, frequency

268
amaranth/build/run.py Normal file
View file

@ -0,0 +1,268 @@
from collections import OrderedDict
from contextlib import contextmanager
from abc import ABCMeta, abstractmethod
import os
import sys
import subprocess
import tempfile
import zipfile
import hashlib
import pathlib
__all__ = ["BuildPlan", "BuildProducts", "LocalBuildProducts", "RemoteSSHBuildProducts"]
class BuildPlan:
def __init__(self, script):
"""A build plan.
Parameters
----------
script : str
The base name (without extension) of the script that will be executed.
"""
self.script = script
self.files = OrderedDict()
def add_file(self, filename, content):
"""
Add ``content``, which can be a :class:`str`` or :class:`bytes`, to the build plan
as ``filename``. The file name can be a relative path with directories separated by
forward slashes (``/``).
"""
assert isinstance(filename, str) and filename not in self.files
self.files[filename] = content
def digest(self, size=64):
"""
Compute a `digest`, a short byte sequence deterministically and uniquely identifying
this build plan.
"""
hasher = hashlib.blake2b(digest_size=size)
for filename in sorted(self.files):
hasher.update(filename.encode("utf-8"))
content = self.files[filename]
if isinstance(content, str):
content = content.encode("utf-8")
hasher.update(content)
hasher.update(self.script.encode("utf-8"))
return hasher.digest()
def archive(self, file):
"""
Archive files from the build plan into ``file``, which can be either a filename, or
a file-like object. The produced archive is deterministic: exact same files will
always produce exact same archive.
"""
with zipfile.ZipFile(file, "w") as archive:
# Write archive members in deterministic order and with deterministic timestamp.
for filename in sorted(self.files):
archive.writestr(zipfile.ZipInfo(filename), self.files[filename])
def execute_local(self, root="build", *, run_script=True):
"""
Execute build plan using the local strategy. Files from the build plan are placed in
the build root directory ``root``, and, if ``run_script`` is ``True``, the script
appropriate for the platform (``{script}.bat`` on Windows, ``{script}.sh`` elsewhere) is
executed in the build root.
Returns :class:`LocalBuildProducts`.
"""
os.makedirs(root, exist_ok=True)
cwd = os.getcwd()
try:
os.chdir(root)
for filename, content in self.files.items():
filename = pathlib.Path(filename)
# Forbid parent directory components completely to avoid the possibility
# of writing outside the build root.
assert ".." not in filename.parts
dirname = os.path.dirname(filename)
if dirname:
os.makedirs(dirname, exist_ok=True)
mode = "wt" if isinstance(content, str) else "wb"
with open(filename, mode) as f:
f.write(content)
if run_script:
if sys.platform.startswith("win32"):
# Without "call", "cmd /c {}.bat" will return 0.
# See https://stackoverflow.com/a/30736987 for a detailed explanation of why.
# Running the script manually from a command prompt is unaffected.
subprocess.check_call(["cmd", "/c", "call {}.bat".format(self.script)])
else:
subprocess.check_call(["sh", "{}.sh".format(self.script)])
return LocalBuildProducts(os.getcwd())
finally:
os.chdir(cwd)
def execute_remote_ssh(self, *, connect_to = {}, root, run_script=True):
"""
Execute build plan using the remote SSH strategy. Files from the build
plan are transferred via SFTP to the directory ``root`` on a remote
server. If ``run_script`` is ``True``, the ``paramiko`` SSH client will
then run ``{script}.sh``. ``root`` can either be an absolute or
relative (to the login directory) path.
``connect_to`` is a dictionary that holds all input arguments to
``paramiko``'s ``SSHClient.connect``
(`documentation <http://docs.paramiko.org/en/stable/api/client.html#paramiko.client.SSHClient.connect>`_).
At a minimum, the ``hostname`` input argument must be supplied in this
dictionary as the remote server.
Returns :class:`RemoteSSHBuildProducts`.
"""
from paramiko import SSHClient
with SSHClient() as client:
client.load_system_host_keys()
client.connect(**connect_to)
with client.open_sftp() as sftp:
def mkdir_exist_ok(path):
try:
sftp.mkdir(str(path))
except IOError as e:
# mkdir fails if directory exists. This is fine in amaranth.build.
# Reraise errors containing e.errno info.
if e.errno:
raise e
def mkdirs(path):
# Iteratively create parent directories of a file by iterating over all
# parents except for the root ("."). Slicing the parents results in
# TypeError, so skip over the root ("."); this also handles files
# already in the root directory.
for parent in reversed(path.parents):
if parent == pathlib.PurePosixPath("."):
continue
else:
mkdir_exist_ok(parent)
mkdir_exist_ok(root)
sftp.chdir(root)
for filename, content in self.files.items():
filename = pathlib.PurePosixPath(filename)
assert ".." not in filename.parts
mkdirs(filename)
mode = "wt" if isinstance(content, str) else "wb"
with sftp.file(str(filename), mode) as f:
# "b/t" modifier ignored in SFTP.
if mode == "wt":
f.write(content.encode("utf-8"))
else:
f.write(content)
if run_script:
transport = client.get_transport()
channel = transport.open_session()
channel.set_combine_stderr(True)
cmd = "if [ -f ~/.profile ]; then . ~/.profile; fi && cd {} && sh {}.sh".format(root, self.script)
channel.exec_command(cmd)
# Show the output from the server while products are built.
buf = channel.recv(1024)
while buf:
print(buf.decode("utf-8"), end="")
buf = channel.recv(1024)
return RemoteSSHBuildProducts(connect_to, root)
def execute(self):
"""
Execute build plan using the default strategy. Use one of the ``execute_*`` methods
explicitly to have more control over the strategy.
"""
return self.execute_local()
class BuildProducts(metaclass=ABCMeta):
@abstractmethod
def get(self, filename, mode="b"):
"""
Extract ``filename`` from build products, and return it as a :class:`bytes` (if ``mode``
is ``"b"``) or a :class:`str` (if ``mode`` is ``"t"``).
"""
assert mode in ("b", "t")
@contextmanager
def extract(self, *filenames):
"""
Extract ``filenames`` from build products, place them in an OS-specific temporary file
location, with the extension preserved, and delete them afterwards. This method is used
as a context manager, e.g.: ::
with products.extract("bitstream.bin", "programmer.cfg") \
as bitstream_filename, config_filename:
subprocess.check_call(["program", "-c", config_filename, bitstream_filename])
"""
files = []
try:
for filename in filenames:
# On Windows, a named temporary file (as created by Python) is not accessible to
# others if it's still open within the Python process, so we close it and delete
# it manually.
file = tempfile.NamedTemporaryFile(
prefix="amaranth_", suffix="_" + os.path.basename(filename),
delete=False)
files.append(file)
file.write(self.get(filename))
file.close()
if len(files) == 0:
return (yield)
elif len(files) == 1:
return (yield files[0].name)
else:
return (yield [file.name for file in files])
finally:
for file in files:
os.unlink(file.name)
class LocalBuildProducts(BuildProducts):
def __init__(self, root):
# We provide no guarantees that files will be available on the local filesystem (i.e. in
# any way other than through `products.get()`) in general, so downstream code must never
# rely on this, even when we happen to use a local build most of the time.
self.__root = root
def get(self, filename, mode="b"):
super().get(filename, mode)
with open(os.path.join(self.__root, filename), "r" + mode) as f:
return f.read()
class RemoteSSHBuildProducts(BuildProducts):
def __init__(self, connect_to, root):
self.__connect_to = connect_to
self.__root = root
def get(self, filename, mode="b"):
super().get(filename, mode)
from paramiko import SSHClient
with SSHClient() as client:
client.load_system_host_keys()
client.connect(**self.__connect_to)
with client.open_sftp() as sftp:
sftp.chdir(self.__root)
with sftp.file(filename, "r" + mode) as f:
# "b/t" modifier ignored in SFTP.
if mode == "t":
return f.read().decode("utf-8")
else:
return f.read()

78
amaranth/cli.py Normal file
View file

@ -0,0 +1,78 @@
import argparse
from .hdl.ir import Fragment
from .back import rtlil, cxxrtl, verilog
from .sim import Simulator
__all__ = ["main"]
def main_parser(parser=None):
if parser is None:
parser = argparse.ArgumentParser()
p_action = parser.add_subparsers(dest="action")
p_generate = p_action.add_parser("generate",
help="generate RTLIL, Verilog or CXXRTL from the design")
p_generate.add_argument("-t", "--type", dest="generate_type",
metavar="LANGUAGE", choices=["il", "cc", "v"],
help="generate LANGUAGE (il for RTLIL, v for Verilog, cc for CXXRTL; default: file extension of FILE, if given)")
p_generate.add_argument("generate_file",
metavar="FILE", type=argparse.FileType("w"), nargs="?",
help="write generated code to FILE")
p_simulate = p_action.add_parser(
"simulate", help="simulate the design")
p_simulate.add_argument("-v", "--vcd-file",
metavar="VCD-FILE", type=argparse.FileType("w"),
help="write execution trace to VCD-FILE")
p_simulate.add_argument("-w", "--gtkw-file",
metavar="GTKW-FILE", type=argparse.FileType("w"),
help="write GTKWave configuration to GTKW-FILE")
p_simulate.add_argument("-p", "--period", dest="sync_period",
metavar="TIME", type=float, default=1e-6,
help="set 'sync' clock domain period to TIME (default: %(default)s)")
p_simulate.add_argument("-c", "--clocks", dest="sync_clocks",
metavar="COUNT", type=int, required=True,
help="simulate for COUNT 'sync' clock periods")
return parser
def main_runner(parser, args, design, platform=None, name="top", ports=()):
if args.action == "generate":
fragment = Fragment.get(design, platform)
generate_type = args.generate_type
if generate_type is None and args.generate_file:
if args.generate_file.name.endswith(".il"):
generate_type = "il"
if args.generate_file.name.endswith(".cc"):
generate_type = "cc"
if args.generate_file.name.endswith(".v"):
generate_type = "v"
if generate_type is None:
parser.error("Unable to auto-detect language, specify explicitly with -t/--type")
if generate_type == "il":
output = rtlil.convert(fragment, name=name, ports=ports)
if generate_type == "cc":
output = cxxrtl.convert(fragment, name=name, ports=ports)
if generate_type == "v":
output = verilog.convert(fragment, name=name, ports=ports)
if args.generate_file:
args.generate_file.write(output)
else:
print(output)
if args.action == "simulate":
fragment = Fragment.get(design, platform)
sim = Simulator(fragment)
sim.add_clock(args.sync_period)
with sim.write_vcd(vcd_file=args.vcd_file, gtkw_file=args.gtkw_file, traces=ports):
sim.run_until(args.sync_period * args.sync_clocks, run_passive=True)
def main(*args, **kwargs):
parser = main_parser()
main_runner(parser, parser.parse_args(), *args, **kwargs)

View file

@ -0,0 +1,11 @@
from .fhdl.structure import *
from .fhdl.module import *
from .fhdl.specials import *
from .fhdl.bitcontainer import *
from .fhdl.decorators import *
# from .fhdl.simplify import *
from .sim import *
from .genlib.record import *
from .genlib.fsm import *

View file

View file

@ -0,0 +1,21 @@
from ... import utils
from ...hdl import ast
from ..._utils import deprecated
__all__ = ["log2_int", "bits_for", "value_bits_sign"]
@deprecated("instead of `log2_int`, use `amaranth.utils.log2_int`")
def log2_int(n, need_pow2=True):
return utils.log2_int(n, need_pow2)
@deprecated("instead of `bits_for`, use `amaranth.utils.bits_for`")
def bits_for(n, require_sign_bit=False):
return utils.bits_for(n, require_sign_bit)
@deprecated("instead of `value_bits_sign(v)`, use `v.shape()`")
def value_bits_sign(v):
return tuple(ast.Value.cast(v).shape())

View file

@ -0,0 +1,35 @@
from operator import itemgetter
class ConvOutput:
def __init__(self):
self.main_source = ""
self.data_files = dict()
def set_main_source(self, src):
self.main_source = src
def add_data_file(self, filename_base, content):
filename = filename_base
i = 1
while filename in self.data_files:
parts = filename_base.split(".", maxsplit=1)
parts[0] += "_" + str(i)
filename = ".".join(parts)
i += 1
self.data_files[filename] = content
return filename
def __str__(self):
r = self.main_source + "\n"
for filename, content in sorted(self.data_files.items(),
key=itemgetter(0)):
r += filename + ":\n" + content
return r
def write(self, main_filename):
with open(main_filename, "w") as f:
f.write(self.main_source)
for filename, content in self.data_files.items():
with open(filename, "w") as f:
f.write(content)

View file

@ -0,0 +1,55 @@
from ...hdl.ast import *
from ...hdl.xfrm import ResetInserter as NativeResetInserter
from ...hdl.xfrm import EnableInserter as NativeEnableInserter
from ...hdl.xfrm import DomainRenamer as NativeDomainRenamer
from ..._utils import deprecated
__all__ = ["ResetInserter", "CEInserter", "ClockDomainsRenamer"]
class _CompatControlInserter:
_control_name = None
_native_inserter = None
def __init__(self, clock_domains=None):
self.clock_domains = clock_domains
def __call__(self, module):
if self.clock_domains is None:
signals = {self._control_name: ("sync", Signal(name=self._control_name))}
else:
def name(cd):
return self._control_name + "_" + cd
signals = {name(cd): (cd, Signal(name=name(cd))) for cd in self.clock_domains}
for name, (cd, signal) in signals.items():
setattr(module, name, signal)
return self._native_inserter(dict(signals.values()))(module)
@deprecated("instead of `migen.fhdl.decorators.ResetInserter`, "
"use `amaranth.hdl.xfrm.ResetInserter`; note that Amaranth ResetInserter accepts "
"a dict of reset signals (or a single reset signal) as an argument, not "
"a set of clock domain names (or a single clock domain name)")
class CompatResetInserter(_CompatControlInserter):
_control_name = "reset"
_native_inserter = NativeResetInserter
@deprecated("instead of `migen.fhdl.decorators.CEInserter`, "
"use `amaranth.hdl.xfrm.EnableInserter`; note that Amaranth EnableInserter accepts "
"a dict of enable signals (or a single enable signal) as an argument, not "
"a set of clock domain names (or a single clock domain name)")
class CompatCEInserter(_CompatControlInserter):
_control_name = "ce"
_native_inserter = NativeEnableInserter
class CompatClockDomainsRenamer(NativeDomainRenamer):
def __init__(self, cd_remapping):
super().__init__(cd_remapping)
ResetInserter = CompatResetInserter
CEInserter = CompatCEInserter
ClockDomainsRenamer = CompatClockDomainsRenamer

View file

@ -0,0 +1,163 @@
from collections.abc import Iterable
from ..._utils import flatten, deprecated
from ...hdl import dsl, ir
__all__ = ["Module", "FinalizeError"]
def _flat_list(e):
if isinstance(e, Iterable):
return list(flatten(e))
else:
return [e]
class CompatFinalizeError(Exception):
pass
FinalizeError = CompatFinalizeError
class _CompatModuleProxy:
def __init__(self, cm):
object.__setattr__(self, "_cm", cm)
class _CompatModuleComb(_CompatModuleProxy):
@deprecated("instead of `self.comb +=`, use `m.d.comb +=`")
def __iadd__(self, assigns):
self._cm._module._add_statement(assigns, domain=None, depth=0, compat_mode=True)
return self
class _CompatModuleSyncCD:
def __init__(self, cm, cd):
self._cm = cm
self._cd = cd
@deprecated("instead of `self.sync.<domain> +=`, use `m.d.<domain> +=`")
def __iadd__(self, assigns):
self._cm._module._add_statement(assigns, domain=self._cd, depth=0, compat_mode=True)
return self
class _CompatModuleSync(_CompatModuleProxy):
@deprecated("instead of `self.sync +=`, use `m.d.sync +=`")
def __iadd__(self, assigns):
self._cm._module._add_statement(assigns, domain="sync", depth=0, compat_mode=True)
return self
def __getattr__(self, name):
return _CompatModuleSyncCD(self._cm, name)
def __setattr__(self, name, value):
if not isinstance(value, _CompatModuleSyncCD):
raise AttributeError("Attempted to assign sync property - use += instead")
class _CompatModuleSpecials(_CompatModuleProxy):
@deprecated("instead of `self.specials.<name> =`, use `m.submodules.<name> =`")
def __setattr__(self, name, value):
self._cm._submodules.append((name, value))
setattr(self._cm, name, value)
@deprecated("instead of `self.specials +=`, use `m.submodules +=`")
def __iadd__(self, other):
self._cm._submodules += [(None, e) for e in _flat_list(other)]
return self
class _CompatModuleSubmodules(_CompatModuleProxy):
@deprecated("instead of `self.submodules.<name> =`, use `m.submodules.<name> =`")
def __setattr__(self, name, value):
self._cm._submodules.append((name, value))
setattr(self._cm, name, value)
@deprecated("instead of `self.submodules +=`, use `m.submodules +=`")
def __iadd__(self, other):
self._cm._submodules += [(None, e) for e in _flat_list(other)]
return self
class _CompatModuleClockDomains(_CompatModuleProxy):
@deprecated("instead of `self.clock_domains.<name> =`, use `m.domains.<name> =`")
def __setattr__(self, name, value):
self.__iadd__(value)
setattr(self._cm, name, value)
@deprecated("instead of `self.clock_domains +=`, use `m.domains +=`")
def __iadd__(self, other):
self._cm._module.domains += _flat_list(other)
return self
class CompatModule(ir.Elaboratable):
_MustUse__silence = True
# Actually returns another Amaranth Elaboratable (amaranth.dsl.Module), not a Fragment.
def get_fragment(self):
assert not self.get_fragment_called
self.get_fragment_called = True
self.finalize()
return self._module
def elaborate(self, platform):
if not self.get_fragment_called:
self.get_fragment()
return self._module
def __getattr__(self, name):
if name == "comb":
return _CompatModuleComb(self)
elif name == "sync":
return _CompatModuleSync(self)
elif name == "specials":
return _CompatModuleSpecials(self)
elif name == "submodules":
return _CompatModuleSubmodules(self)
elif name == "clock_domains":
return _CompatModuleClockDomains(self)
elif name == "finalized":
self.finalized = False
return self.finalized
elif name == "_module":
self._module = dsl.Module()
return self._module
elif name == "_submodules":
self._submodules = []
return self._submodules
elif name == "_clock_domains":
self._clock_domains = []
return self._clock_domains
elif name == "get_fragment_called":
self.get_fragment_called = False
return self.get_fragment_called
else:
raise AttributeError("'{}' object has no attribute '{}'"
.format(type(self).__name__, name))
def finalize(self, *args, **kwargs):
def finalize_submodules():
for name, submodule in self._submodules:
if not hasattr(submodule, "finalize"):
continue
if submodule.finalized:
continue
submodule.finalize(*args, **kwargs)
if not self.finalized:
self.finalized = True
finalize_submodules()
self.do_finalize(*args, **kwargs)
finalize_submodules()
for name, submodule in self._submodules:
self._module._add_submodule(submodule, name)
def do_finalize(self):
pass
Module = CompatModule

View file

@ -0,0 +1,145 @@
import warnings
from ..._utils import deprecated, extend
from ...hdl.ast import *
from ...hdl.ir import Elaboratable
from ...hdl.mem import Memory as NativeMemory
from ...hdl.ir import Fragment, Instance
from ...hdl.dsl import Module
from .module import Module as CompatModule
from .structure import Signal
from ...lib.io import Pin
__all__ = ["TSTriple", "Instance", "Memory", "READ_FIRST", "WRITE_FIRST", "NO_CHANGE"]
class TSTriple:
def __init__(self, bits_sign=None, min=None, max=None, reset_o=0, reset_oe=0, reset_i=0,
name=None):
self.o = Signal(bits_sign, min=min, max=max, reset=reset_o,
name=None if name is None else name + "_o")
self.oe = Signal(reset=reset_oe,
name=None if name is None else name + "_oe")
self.i = Signal(bits_sign, min=min, max=max, reset=reset_i,
name=None if name is None else name + "_i")
def __len__(self):
return len(self.o)
def get_tristate(self, io):
return Tristate(io, self.o, self.oe, self.i)
class Tristate(Elaboratable):
def __init__(self, target, o, oe, i=None):
self.target = target
self.o = o
self.oe = oe
self.i = i if i is not None else None
def elaborate(self, platform):
if self.i is None:
pin = Pin(len(self.target), dir="oe")
pin.o = self.o
pin.oe = self.oe
return platform.get_tristate(pin, self.target, attrs={}, invert=None)
else:
pin = Pin(len(self.target), dir="io")
pin.o = self.o
pin.oe = self.oe
pin.i = self.i
return platform.get_input_output(pin, self.target, attrs={}, invert=None)
m = Module()
if self.i is not None:
m.d.comb += self.i.eq(self.target)
m.submodules += Instance("$tribuf",
p_WIDTH=len(self.target),
i_EN=self.oe,
i_A=self.o,
o_Y=self.target,
)
f = m.elaborate(platform)
f.flatten = True
return f
(READ_FIRST, WRITE_FIRST, NO_CHANGE) = range(3)
class _MemoryPort(CompatModule):
def __init__(self, adr, dat_r, we=None, dat_w=None, async_read=False, re=None,
we_granularity=0, mode=WRITE_FIRST, clock_domain="sync"):
self.adr = adr
self.dat_r = dat_r
self.we = we
self.dat_w = dat_w
self.async_read = async_read
self.re = re
self.we_granularity = we_granularity
self.mode = mode
self.clock = ClockSignal(clock_domain)
@extend(NativeMemory)
@deprecated("it is not necessary or permitted to add Memory as a special or submodule")
def elaborate(self, platform):
return Fragment()
class CompatMemory(NativeMemory, Elaboratable):
def __init__(self, width, depth, init=None, name=None):
super().__init__(width=width, depth=depth, init=init, name=name)
@deprecated("instead of `get_port()`, use `read_port()` and `write_port()`")
def get_port(self, write_capable=False, async_read=False, has_re=False, we_granularity=0,
mode=WRITE_FIRST, clock_domain="sync"):
if we_granularity >= self.width:
warnings.warn("do not specify `we_granularity` greater than memory width, as it "
"is a hard error in non-compatibility mode",
DeprecationWarning, stacklevel=1)
we_granularity = 0
if we_granularity == 0:
warnings.warn("instead of `we_granularity=0`, use `we_granularity=None` or avoid "
"specifying it at all, as it is a hard error in non-compatibility mode",
DeprecationWarning, stacklevel=1)
we_granularity = None
assert mode != NO_CHANGE
rdport = self.read_port(domain="comb" if async_read else clock_domain,
transparent=mode == WRITE_FIRST)
rdport.addr.name = "{}_addr".format(self.name)
adr = rdport.addr
dat_r = rdport.data
if write_capable:
wrport = self.write_port(domain=clock_domain, granularity=we_granularity)
wrport.addr = rdport.addr
we = wrport.en
dat_w = wrport.data
else:
we = None
dat_w = None
if has_re:
if mode == READ_FIRST:
re = rdport.en
else:
warnings.warn("the combination of `has_re=True` and `mode=WRITE_FIRST` has "
"surprising behavior: keeping `re` low would merely latch "
"the address, while the data will change with changing memory "
"contents; avoid using `re` with transparent ports as it is a hard "
"error in non-compatibility mode",
DeprecationWarning, stacklevel=1)
re = Signal()
else:
re = None
mp = _MemoryPort(adr, dat_r, we, dat_w,
async_read, re, we_granularity, mode,
clock_domain)
mp.submodules.rdport = rdport
if write_capable:
mp.submodules.wrport = wrport
return mp
Memory = CompatMemory

View file

@ -0,0 +1,185 @@
import builtins
import warnings
from collections import OrderedDict
from ...utils import bits_for
from ..._utils import deprecated, extend
from ...hdl import ast
from ...hdl.ast import (DUID,
Shape, signed, unsigned,
Value, Const, C, Mux, Slice as _Slice, Part, Cat, Repl,
Signal as NativeSignal,
ClockSignal, ResetSignal,
Array, ArrayProxy as _ArrayProxy)
from ...hdl.cd import ClockDomain
__all__ = ["DUID", "wrap", "Mux", "Cat", "Replicate", "Constant", "C", "Signal", "ClockSignal",
"ResetSignal", "If", "Case", "Array", "ClockDomain"]
@deprecated("instead of `wrap`, use `Value.cast`")
def wrap(v):
return Value.cast(v)
class CompatSignal(NativeSignal):
def __init__(self, bits_sign=None, name=None, variable=False, reset=0,
reset_less=False, name_override=None, min=None, max=None,
related=None, attr=None, src_loc_at=0, **kwargs):
if min is not None or max is not None:
warnings.warn("instead of `Signal(min={min}, max={max})`, "
"use `Signal(range({min}, {max}))`"
.format(min=min or 0, max=max or 2),
DeprecationWarning, stacklevel=2 + src_loc_at)
if bits_sign is None:
if min is None:
min = 0
if max is None:
max = 2
max -= 1 # make both bounds inclusive
if min > max:
raise ValueError("Lower bound {} should be less or equal to higher bound {}"
.format(min, max + 1))
sign = min < 0 or max < 0
if min == max:
bits = 0
else:
bits = builtins.max(bits_for(min, sign), bits_for(max, sign))
shape = signed(bits) if sign else unsigned(bits)
else:
if not (min is None and max is None):
raise ValueError("Only one of bits/signedness or bounds may be specified")
shape = bits_sign
super().__init__(shape=shape, name=name_override or name,
reset=reset, reset_less=reset_less,
attrs=attr, src_loc_at=1 + src_loc_at, **kwargs)
Signal = CompatSignal
@deprecated("instead of `Constant`, use `Const`")
def Constant(value, bits_sign=None):
return Const(value, bits_sign)
@deprecated("instead of `Replicate`, use `Repl`")
def Replicate(v, n):
return Repl(v, n)
@extend(Const)
@property
@deprecated("instead of `.nbits`, use `.width`")
def nbits(self):
return self.width
@extend(NativeSignal)
@property
@deprecated("instead of `.nbits`, use `.width`")
def nbits(self):
return self.width
@extend(NativeSignal)
@NativeSignal.nbits.setter
@deprecated("instead of `.nbits = x`, use `.width = x`")
def nbits(self, value):
self.width = value
@extend(NativeSignal)
@deprecated("instead of `.part`, use `.bit_select`")
def part(self, offset, width):
return Part(self, offset, width, src_loc_at=2)
@extend(Cat)
@property
@deprecated("instead of `.l`, use `.parts`")
def l(self):
return self.parts
@extend(ast.Operator)
@property
@deprecated("instead of `.op`, use `.operator`")
def op(self):
return self.operator
@extend(_ArrayProxy)
@property
@deprecated("instead `_ArrayProxy.choices`, use `ArrayProxy.elems`")
def choices(self):
return self.elems
class If(ast.Switch):
@deprecated("instead of `If(cond, ...)`, use `with m.If(cond): ...`")
def __init__(self, cond, *stmts):
cond = Value.cast(cond)
if len(cond) != 1:
cond = cond.bool()
super().__init__(cond, {("1",): ast.Statement.cast(stmts)})
@deprecated("instead of `.Elif(cond, ...)`, use `with m.Elif(cond): ...`")
def Elif(self, cond, *stmts):
cond = Value.cast(cond)
if len(cond) != 1:
cond = cond.bool()
self.cases = OrderedDict((("-" + k,), v) for (k,), v in self.cases.items())
self.cases[("1" + "-" * len(self.test),)] = ast.Statement.cast(stmts)
self.test = Cat(self.test, cond)
return self
@deprecated("instead of `.Else(...)`, use `with m.Else(): ...`")
def Else(self, *stmts):
self.cases[()] = ast.Statement.cast(stmts)
return self
class Case(ast.Switch):
@deprecated("instead of `Case(test, { value: stmts })`, use `with m.Switch(test):` and "
"`with m.Case(value): stmts`; instead of `\"default\": stmts`, use "
"`with m.Case(): stmts`")
def __init__(self, test, cases):
new_cases = []
default = None
for k, v in cases.items():
if isinstance(k, (bool, int)):
k = Const(k)
if (not isinstance(k, Const)
and not (isinstance(k, str) and k == "default")):
raise TypeError("Case object is not a Migen constant")
if isinstance(k, str) and k == "default":
default = v
continue
else:
k = k.value
new_cases.append((k, v))
if default is not None:
new_cases.append((None, default))
super().__init__(test, OrderedDict(new_cases))
@deprecated("instead of `Case(...).makedefault()`, use an explicit default case: "
"`with m.Case(): ...`")
def makedefault(self, key=None):
if key is None:
for choice in self.cases.keys():
if (key is None
or (isinstance(choice, str) and choice == "default")
or choice > key):
key = choice
elif isinstance(key, str) and key == "default":
key = ()
else:
key = ("{:0{}b}".format(ast.Value.cast(key).value, len(self.test)),)
stmts = self.cases[key]
del self.cases[key]
self.cases[()] = stmts
return self

View file

@ -0,0 +1,35 @@
import warnings
from ...hdl.ir import Fragment
from ...hdl.cd import ClockDomain
from ...back import verilog
from .conv_output import ConvOutput
from .module import Module
def convert(fi, ios=None, name="top", special_overrides=dict(),
attr_translate=None, create_clock_domains=True,
display_run=False):
if display_run:
warnings.warn("`display_run=True` support has been removed",
DeprecationWarning, stacklevel=1)
if special_overrides:
warnings.warn("`special_overrides` support as well as `Special` has been removed",
DeprecationWarning, stacklevel=1)
# TODO: attr_translate
if isinstance(fi, Module):
fi = fi.get_fragment()
def missing_domain(name):
if create_clock_domains:
return ClockDomain(name)
v_output = verilog.convert(
elaboratable=fi,
name=name,
ports=ios or (),
missing_domain=missing_domain
)
output = ConvOutput()
output.set_main_source(v_output)
return output

View file

View file

@ -0,0 +1,74 @@
import warnings
from ..._utils import deprecated
from ...lib.cdc import FFSynchronizer as NativeFFSynchronizer
from ...lib.cdc import PulseSynchronizer as NativePulseSynchronizer
from ...hdl.ast import *
from ..fhdl.module import CompatModule
from ..fhdl.structure import If
__all__ = ["MultiReg", "PulseSynchronizer", "GrayCounter", "GrayDecoder"]
class MultiReg(NativeFFSynchronizer):
def __init__(self, i, o, odomain="sync", n=2, reset=0):
old_opts = []
new_opts = []
if odomain != "sync":
old_opts.append(", odomain={!r}".format(odomain))
new_opts.append(", o_domain={!r}".format(odomain))
if n != 2:
old_opts.append(", n={!r}".format(n))
new_opts.append(", stages={!r}".format(n))
warnings.warn("instead of `MultiReg(...{})`, use `FFSynchronizer(...{})`"
.format("".join(old_opts), "".join(new_opts)),
DeprecationWarning, stacklevel=2)
super().__init__(i, o, o_domain=odomain, stages=n, reset=reset)
self.odomain = odomain
@deprecated("instead of `migen.genlib.cdc.PulseSynchronizer`, use `amaranth.lib.cdc.PulseSynchronizer`")
class PulseSynchronizer(NativePulseSynchronizer):
def __init__(self, idomain, odomain):
super().__init__(i_domain=idomain, o_domain=odomain)
@deprecated("instead of `migen.genlib.cdc.GrayCounter`, use `amaranth.lib.coding.GrayEncoder`")
class GrayCounter(CompatModule):
def __init__(self, width):
self.ce = Signal()
self.q = Signal(width)
self.q_next = Signal(width)
self.q_binary = Signal(width)
self.q_next_binary = Signal(width)
###
self.comb += [
If(self.ce,
self.q_next_binary.eq(self.q_binary + 1)
).Else(
self.q_next_binary.eq(self.q_binary)
),
self.q_next.eq(self.q_next_binary ^ self.q_next_binary[1:])
]
self.sync += [
self.q_binary.eq(self.q_next_binary),
self.q.eq(self.q_next)
]
@deprecated("instead of `migen.genlib.cdc.GrayDecoder`, use `amaranth.lib.coding.GrayDecoder`")
class GrayDecoder(CompatModule):
def __init__(self, width):
self.i = Signal(width)
self.o = Signal(width, reset_less=True)
# # #
o_comb = Signal(width)
self.comb += o_comb[-1].eq(self.i[-1])
for i in reversed(range(width-1)):
self.comb += o_comb[i].eq(o_comb[i+1] ^ self.i[i])
self.sync += self.o.eq(o_comb)

View file

@ -0,0 +1,4 @@
from ...lib.coding import *
__all__ = ["Encoder", "PriorityEncoder", "Decoder", "PriorityDecoder"]

View file

@ -0,0 +1,147 @@
from ..._utils import deprecated, extend
from ...lib.fifo import (FIFOInterface as NativeFIFOInterface,
SyncFIFO as NativeSyncFIFO, SyncFIFOBuffered as NativeSyncFIFOBuffered,
AsyncFIFO as NativeAsyncFIFO, AsyncFIFOBuffered as NativeAsyncFIFOBuffered)
__all__ = ["_FIFOInterface", "SyncFIFO", "SyncFIFOBuffered", "AsyncFIFO", "AsyncFIFOBuffered"]
class CompatFIFOInterface(NativeFIFOInterface):
@deprecated("attribute `fwft` must be provided to FIFOInterface constructor")
def __init__(self, width, depth):
super().__init__(width=width, depth=depth, fwft=False)
del self.fwft
@extend(NativeFIFOInterface)
@property
@deprecated("instead of `fifo.din`, use `fifo.w_data`")
def din(self):
return self.w_data
@extend(NativeFIFOInterface)
@NativeFIFOInterface.din.setter
@deprecated("instead of `fifo.din = x`, use `fifo.w_data = x`")
def din(self, w_data):
self.w_data = w_data
@extend(NativeFIFOInterface)
@property
@deprecated("instead of `fifo.writable`, use `fifo.w_rdy`")
def writable(self):
return self.w_rdy
@extend(NativeFIFOInterface)
@NativeFIFOInterface.writable.setter
@deprecated("instead of `fifo.writable = x`, use `fifo.w_rdy = x`")
def writable(self, w_rdy):
self.w_rdy = w_rdy
@extend(NativeFIFOInterface)
@property
@deprecated("instead of `fifo.we`, use `fifo.w_en`")
def we(self):
return self.w_en
@extend(NativeFIFOInterface)
@NativeFIFOInterface.we.setter
@deprecated("instead of `fifo.we = x`, use `fifo.w_en = x`")
def we(self, w_en):
self.w_en = w_en
@extend(NativeFIFOInterface)
@property
@deprecated("instead of `fifo.dout`, use `fifo.r_data`")
def dout(self):
return self.r_data
@extend(NativeFIFOInterface)
@NativeFIFOInterface.dout.setter
@deprecated("instead of `fifo.dout = x`, use `fifo.r_data = x`")
def dout(self, r_data):
self.r_data = r_data
@extend(NativeFIFOInterface)
@property
@deprecated("instead of `fifo.readable`, use `fifo.r_rdy`")
def readable(self):
return self.r_rdy
@extend(NativeFIFOInterface)
@NativeFIFOInterface.readable.setter
@deprecated("instead of `fifo.readable = x`, use `fifo.r_rdy = x`")
def readable(self, r_rdy):
self.r_rdy = r_rdy
@extend(NativeFIFOInterface)
@property
@deprecated("instead of `fifo.re`, use `fifo.r_en`")
def re(self):
return self.r_en
@extend(NativeFIFOInterface)
@NativeFIFOInterface.re.setter
@deprecated("instead of `fifo.re = x`, use `fifo.r_en = x`")
def re(self, r_en):
self.r_en = r_en
@extend(NativeFIFOInterface)
def read(self):
"""Read method for simulation."""
assert (yield self.r_rdy)
value = (yield self.r_data)
yield self.r_en.eq(1)
yield
yield self.r_en.eq(0)
yield
return value
@extend(NativeFIFOInterface)
def write(self, data):
"""Write method for simulation."""
assert (yield self.w_rdy)
yield self.w_data.eq(data)
yield self.w_en.eq(1)
yield
yield self.w_en.eq(0)
yield
class CompatSyncFIFO(NativeSyncFIFO):
def __init__(self, width, depth, fwft=True):
super().__init__(width=width, depth=depth, fwft=fwft)
class CompatSyncFIFOBuffered(NativeSyncFIFOBuffered):
def __init__(self, width, depth):
super().__init__(width=width, depth=depth)
class CompatAsyncFIFO(NativeAsyncFIFO):
def __init__(self, width, depth):
super().__init__(width=width, depth=depth)
class CompatAsyncFIFOBuffered(NativeAsyncFIFOBuffered):
def __init__(self, width, depth):
super().__init__(width=width, depth=depth)
_FIFOInterface = CompatFIFOInterface
SyncFIFO = CompatSyncFIFO
SyncFIFOBuffered = CompatSyncFIFOBuffered
AsyncFIFO = CompatAsyncFIFO
AsyncFIFOBuffered = CompatAsyncFIFOBuffered

View file

@ -0,0 +1,193 @@
from collections import OrderedDict
from ..._utils import deprecated, _ignore_deprecated
from ...hdl.xfrm import ValueTransformer, StatementTransformer
from ...hdl.ast import *
from ...hdl.ast import Signal as NativeSignal
from ..fhdl.module import CompatModule, CompatFinalizeError
from ..fhdl.structure import Signal, If, Case
__all__ = ["AnonymousState", "NextState", "NextValue", "FSM"]
class AnonymousState:
pass
class NextState(Statement):
def __init__(self, state):
super().__init__()
self.state = state
class NextValue(Statement):
def __init__(self, target, value):
super().__init__()
self.target = target
self.value = value
def _target_eq(a, b):
if type(a) != type(b):
return False
ty = type(a)
if ty == Const:
return a.value == b.value
elif ty == NativeSignal or ty == Signal:
return a is b
elif ty == Cat:
return all(_target_eq(x, y) for x, y in zip(a.l, b.l))
elif ty == Slice:
return (_target_eq(a.value, b.value)
and a.start == b.start
and a.stop == b.stop)
elif ty == Part:
return (_target_eq(a.value, b.value)
and _target_eq(a.offset == b.offset)
and a.width == b.width)
elif ty == ArrayProxy:
return (all(_target_eq(x, y) for x, y in zip(a.choices, b.choices))
and _target_eq(a.key, b.key))
else:
raise ValueError("NextValue cannot be used with target type '{}'"
.format(ty))
class _LowerNext(ValueTransformer, StatementTransformer):
def __init__(self, next_state_signal, encoding, aliases):
self.next_state_signal = next_state_signal
self.encoding = encoding
self.aliases = aliases
# (target, next_value_ce, next_value)
self.registers = []
def _get_register_control(self, target):
for x in self.registers:
if _target_eq(target, x[0]):
return x[1], x[2]
raise KeyError
def on_unknown_statement(self, node):
if isinstance(node, NextState):
try:
actual_state = self.aliases[node.state]
except KeyError:
actual_state = node.state
return self.next_state_signal.eq(self.encoding[actual_state])
elif isinstance(node, NextValue):
try:
next_value_ce, next_value = self._get_register_control(node.target)
except KeyError:
related = node.target if isinstance(node.target, Signal) else None
next_value = Signal(node.target.shape(),
name=None if related is None else "{}_fsm_next".format(related.name))
next_value_ce = Signal(
name=None if related is None else "{}_fsm_next_ce".format(related.name))
self.registers.append((node.target, next_value_ce, next_value))
return next_value.eq(node.value), next_value_ce.eq(1)
else:
return node
@deprecated("instead of `migen.genlib.fsm.FSM()`, use `with m.FSM():`; note that there is no "
"replacement for `{before,after}_{entering,leaving}` and `delayed_enter` methods")
class FSM(CompatModule):
def __init__(self, reset_state=None):
self.actions = OrderedDict()
self.state_aliases = dict()
self.reset_state = reset_state
self.before_entering_signals = OrderedDict()
self.before_leaving_signals = OrderedDict()
self.after_entering_signals = OrderedDict()
self.after_leaving_signals = OrderedDict()
def act(self, state, *statements):
if self.finalized:
raise CompatFinalizeError
if self.reset_state is None:
self.reset_state = state
if state not in self.actions:
self.actions[state] = []
self.actions[state] += statements
def delayed_enter(self, name, target, delay):
if self.finalized:
raise CompatFinalizeError
if delay > 0:
state = name
for i in range(delay):
if i == delay - 1:
next_state = target
else:
next_state = AnonymousState()
self.act(state, NextState(next_state))
state = next_state
else:
self.state_aliases[name] = target
def ongoing(self, state):
is_ongoing = Signal()
self.act(state, is_ongoing.eq(1))
return is_ongoing
def _get_signal(self, d, state):
if state not in self.actions:
self.actions[state] = []
try:
return d[state]
except KeyError:
is_el = Signal()
d[state] = is_el
return is_el
def before_entering(self, state):
return self._get_signal(self.before_entering_signals, state)
def before_leaving(self, state):
return self._get_signal(self.before_leaving_signals, state)
def after_entering(self, state):
signal = self._get_signal(self.after_entering_signals, state)
self.sync += signal.eq(self.before_entering(state))
return signal
def after_leaving(self, state):
signal = self._get_signal(self.after_leaving_signals, state)
self.sync += signal.eq(self.before_leaving(state))
return signal
@_ignore_deprecated
def do_finalize(self):
nstates = len(self.actions)
self.encoding = dict((s, n) for n, s in enumerate(self.actions.keys()))
self.decoding = {n: s for s, n in self.encoding.items()}
decoder = lambda n: "{}/{}".format(self.decoding[n], n)
self.state = Signal(range(nstates), reset=self.encoding[self.reset_state], decoder=decoder)
self.next_state = Signal.like(self.state)
for state, signal in self.before_leaving_signals.items():
encoded = self.encoding[state]
self.comb += signal.eq((self.state == encoded) & ~(self.next_state == encoded))
if self.reset_state in self.after_entering_signals:
self.after_entering_signals[self.reset_state].reset = 1
for state, signal in self.before_entering_signals.items():
encoded = self.encoding[state]
self.comb += signal.eq(~(self.state == encoded) & (self.next_state == encoded))
self._finalize_sync(self._lower_controls())
def _lower_controls(self):
return _LowerNext(self.next_state, self.encoding, self.state_aliases)
def _finalize_sync(self, ls):
cases = dict((self.encoding[k], ls.on_statement(v)) for k, v in self.actions.items() if v)
self.comb += [
self.next_state.eq(self.state),
Case(self.state, cases).makedefault(self.encoding[self.reset_state])
]
self.sync += self.state.eq(self.next_state)
for register, next_value_ce, next_value in ls.registers:
self.sync += If(next_value_ce, register.eq(next_value))

View file

@ -0,0 +1,195 @@
from ...tracer import *
from ..fhdl.structure import *
from functools import reduce
from operator import or_
(DIR_NONE, DIR_S_TO_M, DIR_M_TO_S) = range(3)
# Possible layout elements:
# 1. (name, size)
# 2. (name, size, direction)
# 3. (name, sublayout)
# size can be an int, or a (int, bool) tuple for signed numbers
# sublayout must be a list
def set_layout_parameters(layout, **layout_dict):
def resolve(p):
if isinstance(p, str):
try:
return layout_dict[p]
except KeyError:
return p
else:
return p
r = []
for f in layout:
if isinstance(f[1], (int, tuple, str)): # cases 1/2
if len(f) == 3:
r.append((f[0], resolve(f[1]), f[2]))
else:
r.append((f[0], resolve(f[1])))
elif isinstance(f[1], list): # case 3
r.append((f[0], set_layout_parameters(f[1], **layout_dict)))
else:
raise TypeError
return r
def layout_len(layout):
r = 0
for f in layout:
if isinstance(f[1], (int, tuple)): # cases 1/2
if len(f) == 3:
fname, fsize, fdirection = f
else:
fname, fsize = f
elif isinstance(f[1], list): # case 3
fname, fsublayout = f
fsize = layout_len(fsublayout)
else:
raise TypeError
if isinstance(fsize, tuple):
r += fsize[0]
else:
r += fsize
return r
def layout_get(layout, name):
for f in layout:
if f[0] == name:
return f
raise KeyError(name)
def layout_partial(layout, *elements):
r = []
for path in elements:
path_s = path.split("/")
last = path_s.pop()
copy_ref = layout
insert_ref = r
for hop in path_s:
name, copy_ref = layout_get(copy_ref, hop)
try:
name, insert_ref = layout_get(insert_ref, hop)
except KeyError:
new_insert_ref = []
insert_ref.append((hop, new_insert_ref))
insert_ref = new_insert_ref
insert_ref.append(layout_get(copy_ref, last))
return r
class Record:
def __init__(self, layout, name=None, **kwargs):
try:
self.name = get_var_name()
except NameNotFound:
self.name = ""
self.layout = layout
if self.name:
prefix = self.name + "_"
else:
prefix = ""
for f in self.layout:
if isinstance(f[1], (int, tuple)): # cases 1/2
if(len(f) == 3):
fname, fsize, fdirection = f
else:
fname, fsize = f
finst = Signal(fsize, name=prefix + fname, **kwargs)
elif isinstance(f[1], list): # case 3
fname, fsublayout = f
finst = Record(fsublayout, prefix + fname, **kwargs)
else:
raise TypeError
setattr(self, fname, finst)
def eq(self, other):
return [getattr(self, f[0]).eq(getattr(other, f[0]))
for f in self.layout if hasattr(other, f[0])]
def iter_flat(self):
for f in self.layout:
e = getattr(self, f[0])
if isinstance(e, Signal):
if len(f) == 3:
yield e, f[2]
else:
yield e, DIR_NONE
elif isinstance(e, Record):
yield from e.iter_flat()
else:
raise TypeError
def flatten(self):
return [signal for signal, direction in self.iter_flat()]
def raw_bits(self):
return Cat(*self.flatten())
def connect(self, *slaves, keep=None, omit=None):
if keep is None:
_keep = set([f[0] for f in self.layout])
elif isinstance(keep, list):
_keep = set(keep)
else:
_keep = keep
if omit is None:
_omit = set()
elif isinstance(omit, list):
_omit = set(omit)
else:
_omit = omit
_keep = _keep - _omit
r = []
for f in self.layout:
field = f[0]
self_e = getattr(self, field)
if isinstance(self_e, Signal):
if field in _keep:
direction = f[2]
if direction == DIR_M_TO_S:
r += [getattr(slave, field).eq(self_e) for slave in slaves]
elif direction == DIR_S_TO_M:
r.append(self_e.eq(reduce(or_, [getattr(slave, field) for slave in slaves])))
else:
raise TypeError
else:
for slave in slaves:
r += self_e.connect(getattr(slave, field), keep=keep, omit=omit)
return r
def connect_flat(self, *slaves):
r = []
iter_slaves = [slave.iter_flat() for slave in slaves]
for m_signal, m_direction in self.iter_flat():
if m_direction == DIR_M_TO_S:
for iter_slave in iter_slaves:
s_signal, s_direction = next(iter_slave)
assert(s_direction == DIR_M_TO_S)
r.append(s_signal.eq(m_signal))
elif m_direction == DIR_S_TO_M:
s_signals = []
for iter_slave in iter_slaves:
s_signal, s_direction = next(iter_slave)
assert(s_direction == DIR_S_TO_M)
s_signals.append(s_signal)
r.append(m_signal.eq(reduce(or_, s_signals)))
else:
raise TypeError
return r
def __len__(self):
return layout_len(self.layout)
def __repr__(self):
return "<Record " + ":".join(f[0] for f in self.layout) + " at " + hex(id(self)) + ">"

View file

@ -0,0 +1,16 @@
from ..._utils import deprecated
from ...lib.cdc import ResetSynchronizer as NativeResetSynchronizer
__all__ = ["AsyncResetSynchronizer"]
@deprecated("instead of `migen.genlib.resetsync.AsyncResetSynchronizer`, "
"use `amaranth.lib.cdc.ResetSynchronizer`; note that ResetSynchronizer accepts "
"a clock domain name as an argument, not a clock domain object")
class CompatResetSynchronizer(NativeResetSynchronizer):
def __init__(self, cd, async_reset):
super().__init__(async_reset, domain=cd.name)
AsyncResetSynchronizer = CompatResetSynchronizer

View file

@ -0,0 +1,58 @@
import warnings
from ..fhdl.structure import Signal, If, Case
from ..fhdl.module import CompatModule
__all__ = ["RoundRobin", "SP_WITHDRAW", "SP_CE"]
(SP_WITHDRAW, SP_CE) = range(2)
class CompatRoundRobin(CompatModule):
def __init__(self, n, switch_policy=SP_WITHDRAW):
self.request = Signal(n)
self.grant = Signal(max=max(2, n))
self.switch_policy = switch_policy
if self.switch_policy == SP_CE:
warnings.warn("instead of `migen.genlib.roundrobin.RoundRobin`, "
"use `amaranth.lib.scheduler.RoundRobin`; note that RoundRobin does not "
"require a policy anymore but to get the same behavior as SP_CE you"
"should use an EnableInserter",
DeprecationWarning, stacklevel=1)
self.ce = Signal()
else:
warnings.warn("instead of `migen.genlib.roundrobin.RoundRobin`, "
"use `amaranth.lib.scheduler.RoundRobin`; note that RoundRobin does not "
"require a policy anymore",
DeprecationWarning, stacklevel=1)
###
if n > 1:
cases = {}
for i in range(n):
switch = []
for j in reversed(range(i+1, i+n)):
t = j % n
switch = [
If(self.request[t],
self.grant.eq(t)
).Else(
*switch
)
]
if self.switch_policy == SP_WITHDRAW:
case = [If(~self.request[i], *switch)]
else:
case = switch
cases[i] = case
statement = Case(self.grant, cases)
if self.switch_policy == SP_CE:
statement = If(self.ce, statement)
self.sync += statement
else:
self.comb += self.grant.eq(0)
RoundRobin = CompatRoundRobin

View file

@ -0,0 +1,54 @@
import functools
import inspect
from collections.abc import Iterable
from ...hdl.cd import ClockDomain
from ...hdl.ir import Fragment
from ...sim import *
__all__ = ["run_simulation", "passive"]
def run_simulation(fragment_or_module, generators, clocks={"sync": 10}, vcd_name=None,
special_overrides={}):
assert not special_overrides
if hasattr(fragment_or_module, "get_fragment"):
fragment = fragment_or_module.get_fragment()
else:
fragment = fragment_or_module
fragment = Fragment.get(fragment, platform=None)
if not isinstance(generators, dict):
generators = {"sync": generators}
if "sync" not in fragment.domains:
fragment.add_domains(ClockDomain("sync"))
sim = Simulator(fragment)
for domain, period in clocks.items():
sim.add_clock(period / 1e9, domain=domain)
for domain, processes in generators.items():
def wrap(process):
def wrapper():
yield from process
return wrapper
if isinstance(processes, Iterable) and not inspect.isgenerator(processes):
for process in processes:
sim.add_sync_process(wrap(process), domain=domain)
else:
sim.add_sync_process(wrap(processes), domain=domain)
if vcd_name is not None:
with sim.write_vcd(vcd_name):
sim.run()
else:
sim.run()
def passive(generator):
@functools.wraps(generator)
def wrapper(*args, **kwargs):
yield Passive()
yield from generator(*args, **kwargs)
return wrapper

20
amaranth/hdl/__init__.py Normal file
View file

@ -0,0 +1,20 @@
from .ast import Shape, unsigned, signed
from .ast import Value, Const, C, Mux, Cat, Repl, Array, Signal, ClockSignal, ResetSignal
from .dsl import Module
from .cd import ClockDomain
from .ir import Elaboratable, Fragment, Instance
from .mem import Memory
from .rec import Record
from .xfrm import DomainRenamer, ResetInserter, EnableInserter
__all__ = [
"Shape", "unsigned", "signed",
"Value", "Const", "C", "Mux", "Cat", "Repl", "Array", "Signal", "ClockSignal", "ResetSignal",
"Module",
"ClockDomain",
"Elaboratable", "Fragment", "Instance",
"Memory",
"Record",
"DomainRenamer", "ResetInserter", "EnableInserter",
]

1775
amaranth/hdl/ast.py Normal file

File diff suppressed because it is too large Load diff

84
amaranth/hdl/cd.py Normal file
View file

@ -0,0 +1,84 @@
from .. import tracer
from .ast import Signal
__all__ = ["ClockDomain", "DomainError"]
class DomainError(Exception):
pass
class ClockDomain:
"""Synchronous domain.
Parameters
----------
name : str or None
Domain name. If ``None`` (the default) the name is inferred from the variable name this
``ClockDomain`` is assigned to (stripping any `"cd_"` prefix).
reset_less : bool
If ``True``, the domain does not use a reset signal. Registers within this domain are
still all initialized to their reset state once, e.g. through Verilog `"initial"`
statements.
clk_edge : str
The edge of the clock signal on which signals are sampled. Must be one of "pos" or "neg".
async_reset : bool
If ``True``, the domain uses an asynchronous reset, and registers within this domain
are initialized to their reset state when reset level changes. Otherwise, registers
are initialized to reset state at the next clock cycle when reset is asserted.
local : bool
If ``True``, the domain will propagate only downwards in the design hierarchy. Otherwise,
the domain will propagate everywhere.
Attributes
----------
clk : Signal, inout
The clock for this domain. Can be driven or used to drive other signals (preferably
in combinatorial context).
rst : Signal or None, inout
Reset signal for this domain. Can be driven or used to drive.
"""
@staticmethod
def _name_for(domain_name, signal_name):
if domain_name == "sync":
return signal_name
else:
return "{}_{}".format(domain_name, signal_name)
def __init__(self, name=None, *, clk_edge="pos", reset_less=False, async_reset=False,
local=False):
if name is None:
try:
name = tracer.get_var_name()
except tracer.NameNotFound:
raise ValueError("Clock domain name must be specified explicitly")
if name.startswith("cd_"):
name = name[3:]
if name == "comb":
raise ValueError("Domain '{}' may not be clocked".format(name))
if clk_edge not in ("pos", "neg"):
raise ValueError("Domain clock edge must be one of 'pos' or 'neg', not {!r}"
.format(clk_edge))
self.name = name
self.clk = Signal(name=self._name_for(name, "clk"), src_loc_at=1)
self.clk_edge = clk_edge
if reset_less:
self.rst = None
else:
self.rst = Signal(name=self._name_for(name, "rst"), src_loc_at=1)
self.async_reset = async_reset
self.local = local
def rename(self, new_name):
self.name = new_name
self.clk.name = self._name_for(new_name, "clk")
if self.rst is not None:
self.rst.name = self._name_for(new_name, "rst")

546
amaranth/hdl/dsl.py Normal file
View file

@ -0,0 +1,546 @@
from collections import OrderedDict
from contextlib import contextmanager, _GeneratorContextManager
from functools import wraps
from enum import Enum
import warnings
from .._utils import flatten, bits_for
from .. import tracer
from .ast import *
from .ir import *
from .cd import *
from .xfrm import *
__all__ = ["SyntaxError", "SyntaxWarning", "Module"]
class SyntaxError(Exception):
pass
class SyntaxWarning(Warning):
pass
class _ModuleBuilderProxy:
def __init__(self, builder, depth):
object.__setattr__(self, "_builder", builder)
object.__setattr__(self, "_depth", depth)
class _ModuleBuilderDomain(_ModuleBuilderProxy):
def __init__(self, builder, depth, domain):
super().__init__(builder, depth)
self._domain = domain
def __iadd__(self, assigns):
self._builder._add_statement(assigns, domain=self._domain, depth=self._depth)
return self
class _ModuleBuilderDomains(_ModuleBuilderProxy):
def __getattr__(self, name):
if name == "submodules":
warnings.warn("Using '<module>.d.{}' would add statements to clock domain {!r}; "
"did you mean <module>.{} instead?"
.format(name, name, name),
SyntaxWarning, stacklevel=2)
if name == "comb":
domain = None
else:
domain = name
return _ModuleBuilderDomain(self._builder, self._depth, domain)
def __getitem__(self, name):
return self.__getattr__(name)
def __setattr__(self, name, value):
if name == "_depth":
object.__setattr__(self, name, value)
elif not isinstance(value, _ModuleBuilderDomain):
raise AttributeError("Cannot assign 'd.{}' attribute; did you mean 'd.{} +='?"
.format(name, name))
def __setitem__(self, name, value):
return self.__setattr__(name, value)
class _ModuleBuilderRoot:
def __init__(self, builder, depth):
self._builder = builder
self.domain = self.d = _ModuleBuilderDomains(builder, depth)
def __getattr__(self, name):
if name in ("comb", "sync"):
raise AttributeError("'{}' object has no attribute '{}'; did you mean 'd.{}'?"
.format(type(self).__name__, name, name))
raise AttributeError("'{}' object has no attribute '{}'"
.format(type(self).__name__, name))
class _ModuleBuilderSubmodules:
def __init__(self, builder):
object.__setattr__(self, "_builder", builder)
def __iadd__(self, modules):
for module in flatten([modules]):
self._builder._add_submodule(module)
return self
def __setattr__(self, name, submodule):
self._builder._add_submodule(submodule, name)
def __setitem__(self, name, value):
return self.__setattr__(name, value)
def __getattr__(self, name):
return self._builder._get_submodule(name)
def __getitem__(self, name):
return self.__getattr__(name)
class _ModuleBuilderDomainSet:
def __init__(self, builder):
object.__setattr__(self, "_builder", builder)
def __iadd__(self, domains):
for domain in flatten([domains]):
if not isinstance(domain, ClockDomain):
raise TypeError("Only clock domains may be added to `m.domains`, not {!r}"
.format(domain))
self._builder._add_domain(domain)
return self
def __setattr__(self, name, domain):
if not isinstance(domain, ClockDomain):
raise TypeError("Only clock domains may be added to `m.domains`, not {!r}"
.format(domain))
if domain.name != name:
raise NameError("Clock domain name {!r} must match name in `m.domains.{} += ...` "
"syntax"
.format(domain.name, name))
self._builder._add_domain(domain)
# It's not particularly clean to depend on an internal interface, but, unfortunately, __bool__
# must be defined on a class to be called during implicit conversion.
class _GuardedContextManager(_GeneratorContextManager):
def __init__(self, keyword, func, args, kwds):
self.keyword = keyword
return super().__init__(func, args, kwds)
def __bool__(self):
raise SyntaxError("`if m.{kw}(...):` does not work; use `with m.{kw}(...)`"
.format(kw=self.keyword))
def _guardedcontextmanager(keyword):
def decorator(func):
@wraps(func)
def helper(*args, **kwds):
return _GuardedContextManager(keyword, func, args, kwds)
return helper
return decorator
class FSM:
def __init__(self, state, encoding, decoding):
self.state = state
self.encoding = encoding
self.decoding = decoding
def ongoing(self, name):
if name not in self.encoding:
self.encoding[name] = len(self.encoding)
return Operator("==", [self.state, self.encoding[name]], src_loc_at=0)
class Module(_ModuleBuilderRoot, Elaboratable):
@classmethod
def __init_subclass__(cls):
raise SyntaxError("Instead of inheriting from `Module`, inherit from `Elaboratable` "
"and return a `Module` from the `elaborate(self, platform)` method")
def __init__(self):
_ModuleBuilderRoot.__init__(self, self, depth=0)
self.submodules = _ModuleBuilderSubmodules(self)
self.domains = _ModuleBuilderDomainSet(self)
self._statements = Statement.cast([])
self._ctrl_context = None
self._ctrl_stack = []
self._driving = SignalDict()
self._named_submodules = {}
self._anon_submodules = []
self._domains = {}
self._generated = {}
def _check_context(self, construct, context):
if self._ctrl_context != context:
if self._ctrl_context is None:
raise SyntaxError("{} is not permitted outside of {}"
.format(construct, context))
else:
if self._ctrl_context == "Switch":
secondary_context = "Case"
if self._ctrl_context == "FSM":
secondary_context = "State"
raise SyntaxError("{} is not permitted directly inside of {}; it is permitted "
"inside of {} {}"
.format(construct, self._ctrl_context,
self._ctrl_context, secondary_context))
def _get_ctrl(self, name):
if self._ctrl_stack:
top_name, top_data = self._ctrl_stack[-1]
if top_name == name:
return top_data
def _flush_ctrl(self):
while len(self._ctrl_stack) > self.domain._depth:
self._pop_ctrl()
def _set_ctrl(self, name, data):
self._flush_ctrl()
self._ctrl_stack.append((name, data))
return data
def _check_signed_cond(self, cond):
cond = Value.cast(cond)
width, signed = cond.shape()
if signed:
warnings.warn("Signed values in If/Elif conditions usually result from inverting "
"Python booleans with ~, which leads to unexpected results. "
"Replace `~flag` with `not flag`. (If this is a false positive, "
"silence this warning with `m.If(x)` → `m.If(x.bool())`.)",
SyntaxWarning, stacklevel=4)
return cond
@_guardedcontextmanager("If")
def If(self, cond):
self._check_context("If", context=None)
cond = self._check_signed_cond(cond)
src_loc = tracer.get_src_loc(src_loc_at=1)
if_data = self._set_ctrl("If", {
"depth": self.domain._depth,
"tests": [],
"bodies": [],
"src_loc": src_loc,
"src_locs": [],
})
try:
_outer_case, self._statements = self._statements, []
self.domain._depth += 1
yield
self._flush_ctrl()
if_data["tests"].append(cond)
if_data["bodies"].append(self._statements)
if_data["src_locs"].append(src_loc)
finally:
self.domain._depth -= 1
self._statements = _outer_case
@_guardedcontextmanager("Elif")
def Elif(self, cond):
self._check_context("Elif", context=None)
cond = self._check_signed_cond(cond)
src_loc = tracer.get_src_loc(src_loc_at=1)
if_data = self._get_ctrl("If")
if if_data is None or if_data["depth"] != self.domain._depth:
raise SyntaxError("Elif without preceding If")
try:
_outer_case, self._statements = self._statements, []
self.domain._depth += 1
yield
self._flush_ctrl()
if_data["tests"].append(cond)
if_data["bodies"].append(self._statements)
if_data["src_locs"].append(src_loc)
finally:
self.domain._depth -= 1
self._statements = _outer_case
@_guardedcontextmanager("Else")
def Else(self):
self._check_context("Else", context=None)
src_loc = tracer.get_src_loc(src_loc_at=1)
if_data = self._get_ctrl("If")
if if_data is None or if_data["depth"] != self.domain._depth:
raise SyntaxError("Else without preceding If/Elif")
try:
_outer_case, self._statements = self._statements, []
self.domain._depth += 1
yield
self._flush_ctrl()
if_data["bodies"].append(self._statements)
if_data["src_locs"].append(src_loc)
finally:
self.domain._depth -= 1
self._statements = _outer_case
self._pop_ctrl()
@contextmanager
def Switch(self, test):
self._check_context("Switch", context=None)
switch_data = self._set_ctrl("Switch", {
"test": Value.cast(test),
"cases": OrderedDict(),
"src_loc": tracer.get_src_loc(src_loc_at=1),
"case_src_locs": {},
})
try:
self._ctrl_context = "Switch"
self.domain._depth += 1
yield
finally:
self.domain._depth -= 1
self._ctrl_context = None
self._pop_ctrl()
@contextmanager
def Case(self, *patterns):
self._check_context("Case", context="Switch")
src_loc = tracer.get_src_loc(src_loc_at=1)
switch_data = self._get_ctrl("Switch")
new_patterns = ()
for pattern in patterns:
if not isinstance(pattern, (int, str, Enum)):
raise SyntaxError("Case pattern must be an integer, a string, or an enumeration, "
"not {!r}"
.format(pattern))
if isinstance(pattern, str) and any(bit not in "01- \t" for bit in pattern):
raise SyntaxError("Case pattern '{}' must consist of 0, 1, and - (don't care) "
"bits, and may include whitespace"
.format(pattern))
if (isinstance(pattern, str) and
len("".join(pattern.split())) != len(switch_data["test"])):
raise SyntaxError("Case pattern '{}' must have the same width as switch value "
"(which is {})"
.format(pattern, len(switch_data["test"])))
if isinstance(pattern, int) and bits_for(pattern) > len(switch_data["test"]):
warnings.warn("Case pattern '{:b}' is wider than switch value "
"(which has width {}); comparison will never be true"
.format(pattern, len(switch_data["test"])),
SyntaxWarning, stacklevel=3)
continue
if isinstance(pattern, Enum) and bits_for(pattern.value) > len(switch_data["test"]):
warnings.warn("Case pattern '{:b}' ({}.{}) is wider than switch value "
"(which has width {}); comparison will never be true"
.format(pattern.value, pattern.__class__.__name__, pattern.name,
len(switch_data["test"])),
SyntaxWarning, stacklevel=3)
continue
new_patterns = (*new_patterns, pattern)
try:
_outer_case, self._statements = self._statements, []
self._ctrl_context = None
yield
self._flush_ctrl()
# If none of the provided cases can possibly be true, omit this branch completely.
# This needs to be differentiated from no cases being provided in the first place,
# which means the branch will always match.
if not (patterns and not new_patterns):
switch_data["cases"][new_patterns] = self._statements
switch_data["case_src_locs"][new_patterns] = src_loc
finally:
self._ctrl_context = "Switch"
self._statements = _outer_case
def Default(self):
return self.Case()
@contextmanager
def FSM(self, reset=None, domain="sync", name="fsm"):
self._check_context("FSM", context=None)
if domain == "comb":
raise ValueError("FSM may not be driven by the '{}' domain".format(domain))
fsm_data = self._set_ctrl("FSM", {
"name": name,
"signal": Signal(name="{}_state".format(name), src_loc_at=2),
"reset": reset,
"domain": domain,
"encoding": OrderedDict(),
"decoding": OrderedDict(),
"states": OrderedDict(),
"src_loc": tracer.get_src_loc(src_loc_at=1),
"state_src_locs": {},
})
self._generated[name] = fsm = \
FSM(fsm_data["signal"], fsm_data["encoding"], fsm_data["decoding"])
try:
self._ctrl_context = "FSM"
self.domain._depth += 1
yield fsm
for state_name in fsm_data["encoding"]:
if state_name not in fsm_data["states"]:
raise NameError("FSM state '{}' is referenced but not defined"
.format(state_name))
finally:
self.domain._depth -= 1
self._ctrl_context = None
self._pop_ctrl()
@contextmanager
def State(self, name):
self._check_context("FSM State", context="FSM")
src_loc = tracer.get_src_loc(src_loc_at=1)
fsm_data = self._get_ctrl("FSM")
if name in fsm_data["states"]:
raise NameError("FSM state '{}' is already defined".format(name))
if name not in fsm_data["encoding"]:
fsm_data["encoding"][name] = len(fsm_data["encoding"])
try:
_outer_case, self._statements = self._statements, []
self._ctrl_context = None
yield
self._flush_ctrl()
fsm_data["states"][name] = self._statements
fsm_data["state_src_locs"][name] = src_loc
finally:
self._ctrl_context = "FSM"
self._statements = _outer_case
@property
def next(self):
raise SyntaxError("Only assignment to `m.next` is permitted")
@next.setter
def next(self, name):
if self._ctrl_context != "FSM":
for level, (ctrl_name, ctrl_data) in enumerate(reversed(self._ctrl_stack)):
if ctrl_name == "FSM":
if name not in ctrl_data["encoding"]:
ctrl_data["encoding"][name] = len(ctrl_data["encoding"])
self._add_statement(
assigns=[ctrl_data["signal"].eq(ctrl_data["encoding"][name])],
domain=ctrl_data["domain"],
depth=len(self._ctrl_stack))
return
raise SyntaxError("`m.next = <...>` is only permitted inside an FSM state")
def _pop_ctrl(self):
name, data = self._ctrl_stack.pop()
src_loc = data["src_loc"]
if name == "If":
if_tests, if_bodies = data["tests"], data["bodies"]
if_src_locs = data["src_locs"]
tests, cases = [], OrderedDict()
for if_test, if_case in zip(if_tests + [None], if_bodies):
if if_test is not None:
if len(if_test) != 1:
if_test = if_test.bool()
tests.append(if_test)
if if_test is not None:
match = ("1" + "-" * (len(tests) - 1)).rjust(len(if_tests), "-")
else:
match = None
cases[match] = if_case
self._statements.append(Switch(Cat(tests), cases,
src_loc=src_loc, case_src_locs=dict(zip(cases, if_src_locs))))
if name == "Switch":
switch_test, switch_cases = data["test"], data["cases"]
switch_case_src_locs = data["case_src_locs"]
self._statements.append(Switch(switch_test, switch_cases,
src_loc=src_loc, case_src_locs=switch_case_src_locs))
if name == "FSM":
fsm_signal, fsm_reset, fsm_encoding, fsm_decoding, fsm_states = \
data["signal"], data["reset"], data["encoding"], data["decoding"], data["states"]
fsm_state_src_locs = data["state_src_locs"]
if not fsm_states:
return
fsm_signal.width = bits_for(len(fsm_encoding) - 1)
if fsm_reset is None:
fsm_signal.reset = fsm_encoding[next(iter(fsm_states))]
else:
fsm_signal.reset = fsm_encoding[fsm_reset]
# The FSM is encoded such that the state with encoding 0 is always the reset state.
fsm_decoding.update((n, s) for s, n in fsm_encoding.items())
fsm_signal.decoder = lambda n: "{}/{}".format(fsm_decoding[n], n)
self._statements.append(Switch(fsm_signal,
OrderedDict((fsm_encoding[name], stmts) for name, stmts in fsm_states.items()),
src_loc=src_loc, case_src_locs={fsm_encoding[name]: fsm_state_src_locs[name]
for name in fsm_states}))
def _add_statement(self, assigns, domain, depth, compat_mode=False):
def domain_name(domain):
if domain is None:
return "comb"
else:
return domain
while len(self._ctrl_stack) > self.domain._depth:
self._pop_ctrl()
for stmt in Statement.cast(assigns):
if not compat_mode and not isinstance(stmt, (Assign, Assert, Assume, Cover)):
raise SyntaxError(
"Only assignments and property checks may be appended to d.{}"
.format(domain_name(domain)))
stmt._MustUse__used = True
stmt = SampleDomainInjector(domain)(stmt)
for signal in stmt._lhs_signals():
if signal not in self._driving:
self._driving[signal] = domain
elif self._driving[signal] != domain:
cd_curr = self._driving[signal]
raise SyntaxError(
"Driver-driver conflict: trying to drive {!r} from d.{}, but it is "
"already driven from d.{}"
.format(signal, domain_name(domain), domain_name(cd_curr)))
self._statements.append(stmt)
def _add_submodule(self, submodule, name=None):
if not hasattr(submodule, "elaborate"):
raise TypeError("Trying to add {!r}, which does not implement .elaborate(), as "
"a submodule".format(submodule))
if name == None:
self._anon_submodules.append(submodule)
else:
if name in self._named_submodules:
raise NameError("Submodule named '{}' already exists".format(name))
self._named_submodules[name] = submodule
def _get_submodule(self, name):
if name in self._named_submodules:
return self._named_submodules[name]
else:
raise AttributeError("No submodule named '{}' exists".format(name))
def _add_domain(self, cd):
if cd.name in self._domains:
raise NameError("Clock domain named '{}' already exists".format(cd.name))
self._domains[cd.name] = cd
def _flush(self):
while self._ctrl_stack:
self._pop_ctrl()
def elaborate(self, platform):
self._flush()
fragment = Fragment()
for name in self._named_submodules:
fragment.add_subfragment(Fragment.get(self._named_submodules[name], platform), name)
for submodule in self._anon_submodules:
fragment.add_subfragment(Fragment.get(submodule, platform), None)
statements = SampleDomainInjector("sync")(self._statements)
fragment.add_statements(statements)
for signal, domain in self._driving.items():
fragment.add_driver(signal, domain)
fragment.add_domains(self._domains.values())
fragment.generated.update(self._generated)
return fragment

592
amaranth/hdl/ir.py Normal file
View file

@ -0,0 +1,592 @@
from abc import ABCMeta
from collections import defaultdict, OrderedDict
from functools import reduce
import warnings
from .._utils import *
from .._unused import *
from .ast import *
from .cd import *
__all__ = ["UnusedElaboratable", "Elaboratable", "DriverConflict", "Fragment", "Instance"]
class UnusedElaboratable(UnusedMustUse):
pass
class Elaboratable(MustUse, metaclass=ABCMeta):
_MustUse__warning = UnusedElaboratable
class DriverConflict(UserWarning):
pass
class Fragment:
@staticmethod
def get(obj, platform):
code = None
while True:
if isinstance(obj, Fragment):
return obj
elif isinstance(obj, Elaboratable):
code = obj.elaborate.__code__
obj._MustUse__used = True
obj = obj.elaborate(platform)
elif hasattr(obj, "elaborate"):
warnings.warn(
message="Class {!r} is an elaboratable that does not explicitly inherit from "
"Elaboratable; doing so would improve diagnostics"
.format(type(obj)),
category=RuntimeWarning,
stacklevel=2)
code = obj.elaborate.__code__
obj = obj.elaborate(platform)
else:
raise AttributeError("Object {!r} cannot be elaborated".format(obj))
if obj is None and code is not None:
warnings.warn_explicit(
message=".elaborate() returned None; missing return statement?",
category=UserWarning,
filename=code.co_filename,
lineno=code.co_firstlineno)
def __init__(self):
self.ports = SignalDict()
self.drivers = OrderedDict()
self.statements = []
self.domains = OrderedDict()
self.subfragments = []
self.attrs = OrderedDict()
self.generated = OrderedDict()
self.flatten = False
def add_ports(self, *ports, dir):
assert dir in ("i", "o", "io")
for port in flatten(ports):
self.ports[port] = dir
def iter_ports(self, dir=None):
if dir is None:
yield from self.ports
else:
for port, port_dir in self.ports.items():
if port_dir == dir:
yield port
def add_driver(self, signal, domain=None):
if domain not in self.drivers:
self.drivers[domain] = SignalSet()
self.drivers[domain].add(signal)
def iter_drivers(self):
for domain, signals in self.drivers.items():
for signal in signals:
yield domain, signal
def iter_comb(self):
if None in self.drivers:
yield from self.drivers[None]
def iter_sync(self):
for domain, signals in self.drivers.items():
if domain is None:
continue
for signal in signals:
yield domain, signal
def iter_signals(self):
signals = SignalSet()
signals |= self.ports.keys()
for domain, domain_signals in self.drivers.items():
if domain is not None:
cd = self.domains[domain]
signals.add(cd.clk)
if cd.rst is not None:
signals.add(cd.rst)
signals |= domain_signals
return signals
def add_domains(self, *domains):
for domain in flatten(domains):
assert isinstance(domain, ClockDomain)
assert domain.name not in self.domains
self.domains[domain.name] = domain
def iter_domains(self):
yield from self.domains
def add_statements(self, *stmts):
for stmt in Statement.cast(stmts):
stmt._MustUse__used = True
self.statements.append(stmt)
def add_subfragment(self, subfragment, name=None):
assert isinstance(subfragment, Fragment)
self.subfragments.append((subfragment, name))
def find_subfragment(self, name_or_index):
if isinstance(name_or_index, int):
if name_or_index < len(self.subfragments):
subfragment, name = self.subfragments[name_or_index]
return subfragment
raise NameError("No subfragment at index #{}".format(name_or_index))
else:
for subfragment, name in self.subfragments:
if name == name_or_index:
return subfragment
raise NameError("No subfragment with name '{}'".format(name_or_index))
def find_generated(self, *path):
if len(path) > 1:
path_component, *path = path
return self.find_subfragment(path_component).find_generated(*path)
else:
item, = path
return self.generated[item]
def elaborate(self, platform):
return self
def _merge_subfragment(self, subfragment):
# Merge subfragment's everything except clock domains into this fragment.
# Flattening is done after clock domain propagation, so we can assume the domains
# are already the same in every involved fragment in the first place.
self.ports.update(subfragment.ports)
for domain, signal in subfragment.iter_drivers():
self.add_driver(signal, domain)
self.statements += subfragment.statements
self.subfragments += subfragment.subfragments
# Remove the merged subfragment.
found = False
for i, (check_subfrag, check_name) in enumerate(self.subfragments): # :nobr:
if subfragment == check_subfrag:
del self.subfragments[i]
found = True
break
assert found
def _resolve_hierarchy_conflicts(self, hierarchy=("top",), mode="warn"):
assert mode in ("silent", "warn", "error")
driver_subfrags = SignalDict()
memory_subfrags = OrderedDict()
def add_subfrag(registry, entity, entry):
# Because of missing domain insertion, at the point when this code runs, we have
# a mixture of bound and unbound {Clock,Reset}Signals. Map the bound ones to
# the actual signals (because the signal itself can be driven as well); but leave
# the unbound ones as it is, because there's no concrete signal for it yet anyway.
if isinstance(entity, ClockSignal) and entity.domain in self.domains:
entity = self.domains[entity.domain].clk
elif isinstance(entity, ResetSignal) and entity.domain in self.domains:
entity = self.domains[entity.domain].rst
if entity not in registry:
registry[entity] = set()
registry[entity].add(entry)
# For each signal driven by this fragment and/or its subfragments, determine which
# subfragments also drive it.
for domain, signal in self.iter_drivers():
add_subfrag(driver_subfrags, signal, (None, hierarchy))
flatten_subfrags = set()
for i, (subfrag, name) in enumerate(self.subfragments):
if name is None:
name = "<unnamed #{}>".format(i)
subfrag_hierarchy = hierarchy + (name,)
if subfrag.flatten:
# Always flatten subfragments that explicitly request it.
flatten_subfrags.add((subfrag, subfrag_hierarchy))
if isinstance(subfrag, Instance):
# For memories (which are subfragments, but semantically a part of superfragment),
# record that this fragment is driving it.
if subfrag.type in ("$memrd", "$memwr"):
memory = subfrag.parameters["MEMID"]
add_subfrag(memory_subfrags, memory, (None, hierarchy))
# Never flatten instances.
continue
# First, recurse into subfragments and let them detect driver conflicts as well.
subfrag_drivers, subfrag_memories = \
subfrag._resolve_hierarchy_conflicts(subfrag_hierarchy, mode)
# Second, classify subfragments by signals they drive and memories they use.
for signal in subfrag_drivers:
add_subfrag(driver_subfrags, signal, (subfrag, subfrag_hierarchy))
for memory in subfrag_memories:
add_subfrag(memory_subfrags, memory, (subfrag, subfrag_hierarchy))
# Find out the set of subfragments that needs to be flattened into this fragment
# to resolve driver-driver conflicts.
def flatten_subfrags_if_needed(subfrags):
if len(subfrags) == 1:
return []
flatten_subfrags.update((f, h) for f, h in subfrags if f is not None)
return list(sorted(".".join(h) for f, h in subfrags))
for signal, subfrags in driver_subfrags.items():
subfrag_names = flatten_subfrags_if_needed(subfrags)
if not subfrag_names:
continue
# While we're at it, show a message.
message = ("Signal '{}' is driven from multiple fragments: {}"
.format(signal, ", ".join(subfrag_names)))
if mode == "error":
raise DriverConflict(message)
elif mode == "warn":
message += "; hierarchy will be flattened"
warnings.warn_explicit(message, DriverConflict, *signal.src_loc)
for memory, subfrags in memory_subfrags.items():
subfrag_names = flatten_subfrags_if_needed(subfrags)
if not subfrag_names:
continue
# While we're at it, show a message.
message = ("Memory '{}' is accessed from multiple fragments: {}"
.format(memory.name, ", ".join(subfrag_names)))
if mode == "error":
raise DriverConflict(message)
elif mode == "warn":
message += "; hierarchy will be flattened"
warnings.warn_explicit(message, DriverConflict, *memory.src_loc)
# Flatten hierarchy.
for subfrag, subfrag_hierarchy in sorted(flatten_subfrags, key=lambda x: x[1]):
self._merge_subfragment(subfrag)
# If we flattened anything, we might be in a situation where we have a driver conflict
# again, e.g. if we had a tree of fragments like A --- B --- C where only fragments
# A and C were driving a signal S. In that case, since B is not driving S itself,
# processing B will not result in any flattening, but since B is transitively driving S,
# processing A will flatten B into it. Afterwards, we have a tree like AB --- C, which
# has another conflict.
if any(flatten_subfrags):
# Try flattening again.
return self._resolve_hierarchy_conflicts(hierarchy, mode)
# Nothing was flattened, we're done!
return (SignalSet(driver_subfrags.keys()),
set(memory_subfrags.keys()))
def _propagate_domains_up(self, hierarchy=("top",)):
from .xfrm import DomainRenamer
domain_subfrags = defaultdict(lambda: set())
# For each domain defined by a subfragment, determine which subfragments define it.
for i, (subfrag, name) in enumerate(self.subfragments):
# First, recurse into subfragments and let them propagate domains up as well.
hier_name = name
if hier_name is None:
hier_name = "<unnamed #{}>".format(i)
subfrag._propagate_domains_up(hierarchy + (hier_name,))
# Second, classify subfragments by domains they define.
for domain_name, domain in subfrag.domains.items():
if domain.local:
continue
domain_subfrags[domain_name].add((subfrag, name, i))
# For each domain defined by more than one subfragment, rename the domain in each
# of the subfragments such that they no longer conflict.
for domain_name, subfrags in domain_subfrags.items():
if len(subfrags) == 1:
continue
names = [n for f, n, i in subfrags]
if not all(names):
names = sorted("<unnamed #{}>".format(i) if n is None else "'{}'".format(n)
for f, n, i in subfrags)
raise DomainError("Domain '{}' is defined by subfragments {} of fragment '{}'; "
"it is necessary to either rename subfragment domains "
"explicitly, or give names to subfragments"
.format(domain_name, ", ".join(names), ".".join(hierarchy)))
if len(names) != len(set(names)):
names = sorted("#{}".format(i) for f, n, i in subfrags)
raise DomainError("Domain '{}' is defined by subfragments {} of fragment '{}', "
"some of which have identical names; it is necessary to either "
"rename subfragment domains explicitly, or give distinct names "
"to subfragments"
.format(domain_name, ", ".join(names), ".".join(hierarchy)))
for subfrag, name, i in subfrags:
domain_name_map = {domain_name: "{}_{}".format(name, domain_name)}
self.subfragments[i] = (DomainRenamer(domain_name_map)(subfrag), name)
# Finally, collect the (now unique) subfragment domains, and merge them into our domains.
for subfrag, name in self.subfragments:
for domain_name, domain in subfrag.domains.items():
if domain.local:
continue
self.add_domains(domain)
def _propagate_domains_down(self):
# For each domain defined in this fragment, ensure it also exists in all subfragments.
for subfrag, name in self.subfragments:
for domain in self.iter_domains():
if domain in subfrag.domains:
assert self.domains[domain] is subfrag.domains[domain]
else:
subfrag.add_domains(self.domains[domain])
subfrag._propagate_domains_down()
def _create_missing_domains(self, missing_domain, *, platform=None):
from .xfrm import DomainCollector
collector = DomainCollector()
collector(self)
new_domains = []
for domain_name in collector.used_domains - collector.defined_domains:
if domain_name is None:
continue
value = missing_domain(domain_name)
if value is None:
raise DomainError("Domain '{}' is used but not defined".format(domain_name))
if type(value) is ClockDomain:
self.add_domains(value)
# And expose ports on the newly added clock domain, since it is added directly
# and there was no chance to add any logic driving it.
new_domains.append(value)
else:
new_fragment = Fragment.get(value, platform=platform)
if domain_name not in new_fragment.domains:
defined = new_fragment.domains.keys()
raise DomainError(
"Fragment returned by missing domain callback does not define "
"requested domain '{}' (defines {})."
.format(domain_name, ", ".join("'{}'".format(n) for n in defined)))
self.add_subfragment(new_fragment, "cd_{}".format(domain_name))
self.add_domains(new_fragment.domains.values())
return new_domains
def _propagate_domains(self, missing_domain, *, platform=None):
self._propagate_domains_up()
self._propagate_domains_down()
self._resolve_hierarchy_conflicts()
new_domains = self._create_missing_domains(missing_domain, platform=platform)
self._propagate_domains_down()
return new_domains
def _prepare_use_def_graph(self, parent, level, uses, defs, ios, top):
def add_uses(*sigs, self=self):
for sig in flatten(sigs):
if sig not in uses:
uses[sig] = set()
uses[sig].add(self)
def add_defs(*sigs):
for sig in flatten(sigs):
if sig not in defs:
defs[sig] = self
else:
assert defs[sig] is self
def add_io(*sigs):
for sig in flatten(sigs):
if sig not in ios:
ios[sig] = self
else:
assert ios[sig] is self
# Collect all signals we're driving (on LHS of statements), and signals we're using
# (on RHS of statements, or in clock domains).
for stmt in self.statements:
add_uses(stmt._rhs_signals())
add_defs(stmt._lhs_signals())
for domain, _ in self.iter_sync():
cd = self.domains[domain]
add_uses(cd.clk)
if cd.rst is not None:
add_uses(cd.rst)
# Repeat for subfragments.
for subfrag, name in self.subfragments:
if isinstance(subfrag, Instance):
for port_name, (value, dir) in subfrag.named_ports.items():
if dir == "i":
# Prioritize defs over uses.
rhs_without_outputs = value._rhs_signals() - subfrag.iter_ports(dir="o")
subfrag.add_ports(rhs_without_outputs, dir=dir)
add_uses(value._rhs_signals())
if dir == "o":
subfrag.add_ports(value._lhs_signals(), dir=dir)
add_defs(value._lhs_signals())
if dir == "io":
subfrag.add_ports(value._lhs_signals(), dir=dir)
add_io(value._lhs_signals())
else:
parent[subfrag] = self
level [subfrag] = level[self] + 1
subfrag._prepare_use_def_graph(parent, level, uses, defs, ios, top)
def _propagate_ports(self, ports, all_undef_as_ports):
# Take this fragment graph:
#
# __ B (def: q, use: p r)
# /
# A (def: p, use: q r)
# \
# \_ C (def: r, use: p q)
#
# We need to consider three cases.
# 1. Signal p requires an input port in B;
# 2. Signal r requires an output port in C;
# 3. Signal r requires an output port in C and an input port in B.
#
# Adding these ports can be in general done in three steps for each signal:
# 1. Find the least common ancestor of all uses and defs.
# 2. Going upwards from the single def, add output ports.
# 3. Going upwards from all uses, add input ports.
parent = {self: None}
level = {self: 0}
uses = SignalDict()
defs = SignalDict()
ios = SignalDict()
self._prepare_use_def_graph(parent, level, uses, defs, ios, self)
ports = SignalSet(ports)
if all_undef_as_ports:
for sig in uses:
if sig in defs:
continue
ports.add(sig)
for sig in ports:
if sig not in uses:
uses[sig] = set()
uses[sig].add(self)
@memoize
def lca_of(fragu, fragv):
# Normalize fragu to be deeper than fragv.
if level[fragu] < level[fragv]:
fragu, fragv = fragv, fragu
# Find ancestor of fragu on the same level as fragv.
for _ in range(level[fragu] - level[fragv]):
fragu = parent[fragu]
# If fragv was the ancestor of fragv, we're done.
if fragu == fragv:
return fragu
# Otherwise, they are at the same level but in different branches. Step both fragu
# and fragv until we find the common ancestor.
while parent[fragu] != parent[fragv]:
fragu = parent[fragu]
fragv = parent[fragv]
return parent[fragu]
for sig in uses:
if sig in defs:
lca = reduce(lca_of, uses[sig], defs[sig])
else:
lca = reduce(lca_of, uses[sig])
for frag in uses[sig]:
if sig in defs and frag is defs[sig]:
continue
while frag != lca:
frag.add_ports(sig, dir="i")
frag = parent[frag]
if sig in defs:
frag = defs[sig]
while frag != lca:
frag.add_ports(sig, dir="o")
frag = parent[frag]
for sig in ios:
frag = ios[sig]
while frag is not None:
frag.add_ports(sig, dir="io")
frag = parent[frag]
for sig in ports:
if sig in ios:
continue
if sig in defs:
self.add_ports(sig, dir="o")
else:
self.add_ports(sig, dir="i")
def prepare(self, ports=None, missing_domain=lambda name: ClockDomain(name)):
from .xfrm import SampleLowerer, DomainLowerer
fragment = SampleLowerer()(self)
new_domains = fragment._propagate_domains(missing_domain)
fragment = DomainLowerer()(fragment)
if ports is None:
fragment._propagate_ports(ports=(), all_undef_as_ports=True)
else:
if not isinstance(ports, tuple) and not isinstance(ports, list):
msg = "`ports` must be either a list or a tuple, not {!r}"\
.format(ports)
if isinstance(ports, Value):
msg += " (did you mean `ports=(<signal>,)`, rather than `ports=<signal>`?)"
raise TypeError(msg)
mapped_ports = []
# Lower late bound signals like ClockSignal() to ports.
port_lowerer = DomainLowerer(fragment.domains)
for port in ports:
if not isinstance(port, (Signal, ClockSignal, ResetSignal)):
raise TypeError("Only signals may be added as ports, not {!r}"
.format(port))
mapped_ports.append(port_lowerer.on_value(port))
# Add ports for all newly created missing clock domains, since not doing so defeats
# the purpose of domain auto-creation. (It's possible to refer to these ports before
# the domain actually exists through late binding, but it's inconvenient.)
for cd in new_domains:
mapped_ports.append(cd.clk)
if cd.rst is not None:
mapped_ports.append(cd.rst)
fragment._propagate_ports(ports=mapped_ports, all_undef_as_ports=False)
return fragment
class Instance(Fragment):
def __init__(self, type, *args, **kwargs):
super().__init__()
self.type = type
self.parameters = OrderedDict()
self.named_ports = OrderedDict()
for (kind, name, value) in args:
if kind == "a":
self.attrs[name] = value
elif kind == "p":
self.parameters[name] = value
elif kind in ("i", "o", "io"):
self.named_ports[name] = (Value.cast(value), kind)
else:
raise NameError("Instance argument {!r} should be a tuple (kind, name, value) "
"where kind is one of \"a\", \"p\", \"i\", \"o\", or \"io\""
.format((kind, name, value)))
for kw, arg in kwargs.items():
if kw.startswith("a_"):
self.attrs[kw[2:]] = arg
elif kw.startswith("p_"):
self.parameters[kw[2:]] = arg
elif kw.startswith("i_"):
self.named_ports[kw[2:]] = (Value.cast(arg), "i")
elif kw.startswith("o_"):
self.named_ports[kw[2:]] = (Value.cast(arg), "o")
elif kw.startswith("io_"):
self.named_ports[kw[3:]] = (Value.cast(arg), "io")
else:
raise NameError("Instance keyword argument {}={!r} does not start with one of "
"\"a_\", \"p_\", \"i_\", \"o_\", or \"io_\""
.format(kw, arg))

322
amaranth/hdl/mem.py Normal file
View file

@ -0,0 +1,322 @@
import operator
from collections import OrderedDict
from .. import tracer
from .ast import *
from .ir import Elaboratable, Instance
__all__ = ["Memory", "ReadPort", "WritePort", "DummyPort"]
class Memory:
"""A word addressable storage.
Parameters
----------
width : int
Access granularity. Each storage element of this memory is ``width`` bits in size.
depth : int
Word count. This memory contains ``depth`` storage elements.
init : list of int
Initial values. At power on, each storage element in this memory is initialized to
the corresponding element of ``init``, if any, or to zero otherwise.
Uninitialized memories are not currently supported.
name : str
Name hint for this memory. If ``None`` (default) the name is inferred from the variable
name this ``Signal`` is assigned to.
attrs : dict
Dictionary of synthesis attributes.
Attributes
----------
width : int
depth : int
init : list of int
attrs : dict
"""
def __init__(self, *, width, depth, init=None, name=None, attrs=None, simulate=True):
if not isinstance(width, int) or width < 0:
raise TypeError("Memory width must be a non-negative integer, not {!r}"
.format(width))
if not isinstance(depth, int) or depth < 0:
raise TypeError("Memory depth must be a non-negative integer, not {!r}"
.format(depth))
self.name = name or tracer.get_var_name(depth=2, default="$memory")
self.src_loc = tracer.get_src_loc()
self.width = width
self.depth = depth
self.attrs = OrderedDict(() if attrs is None else attrs)
# Array of signals for simulation.
self._array = Array()
if simulate:
for addr in range(self.depth):
self._array.append(Signal(self.width, name="{}({})"
.format(name or "memory", addr)))
self.init = init
@property
def init(self):
return self._init
@init.setter
def init(self, new_init):
self._init = [] if new_init is None else list(new_init)
if len(self.init) > self.depth:
raise ValueError("Memory initialization value count exceed memory depth ({} > {})"
.format(len(self.init), self.depth))
try:
for addr in range(len(self._array)):
if addr < len(self._init):
self._array[addr].reset = operator.index(self._init[addr])
else:
self._array[addr].reset = 0
except TypeError as e:
raise TypeError("Memory initialization value at address {:x}: {}"
.format(addr, e)) from None
def read_port(self, *, src_loc_at=0, **kwargs):
"""Get a read port.
See :class:`ReadPort` for details.
Arguments
---------
domain : str
transparent : bool
Returns
-------
An instance of :class:`ReadPort` associated with this memory.
"""
return ReadPort(self, src_loc_at=1 + src_loc_at, **kwargs)
def write_port(self, *, src_loc_at=0, **kwargs):
"""Get a write port.
See :class:`WritePort` for details.
Arguments
---------
domain : str
granularity : int
Returns
-------
An instance of :class:`WritePort` associated with this memory.
"""
return WritePort(self, src_loc_at=1 + src_loc_at, **kwargs)
def __getitem__(self, index):
"""Simulation only."""
return self._array[index]
class ReadPort(Elaboratable):
"""A memory read port.
Parameters
----------
memory : :class:`Memory`
Memory associated with the port.
domain : str
Clock domain. Defaults to ``"sync"``. If set to ``"comb"``, the port is asynchronous.
Otherwise, the read data becomes available on the next clock cycle.
transparent : bool
Port transparency. If set (default), a read at an address that is also being written to in
the same clock cycle will output the new value. Otherwise, the old value will be output
first. This behavior only applies to ports in the same domain.
Attributes
----------
memory : :class:`Memory`
domain : str
transparent : bool
addr : Signal(range(memory.depth)), in
Read address.
data : Signal(memory.width), out
Read data.
en : Signal or Const, in
Read enable. If asserted, ``data`` is updated with the word stored at ``addr``. Note that
transparent ports cannot assign ``en`` (which is hardwired to 1 instead), as doing so is
currently not supported by Yosys.
Exceptions
----------
Raises :exn:`ValueError` if the read port is simultaneously asynchronous and non-transparent.
"""
def __init__(self, memory, *, domain="sync", transparent=True, src_loc_at=0):
if domain == "comb" and not transparent:
raise ValueError("Read port cannot be simultaneously asynchronous and non-transparent")
self.memory = memory
self.domain = domain
self.transparent = transparent
self.addr = Signal(range(memory.depth),
name="{}_r_addr".format(memory.name), src_loc_at=1 + src_loc_at)
self.data = Signal(memory.width,
name="{}_r_data".format(memory.name), src_loc_at=1 + src_loc_at)
if self.domain != "comb" and not transparent:
self.en = Signal(name="{}_r_en".format(memory.name), reset=1,
src_loc_at=1 + src_loc_at)
else:
self.en = Const(1)
def elaborate(self, platform):
f = Instance("$memrd",
p_MEMID=self.memory,
p_ABITS=self.addr.width,
p_WIDTH=self.data.width,
p_CLK_ENABLE=self.domain != "comb",
p_CLK_POLARITY=1,
p_TRANSPARENT=self.transparent,
i_CLK=ClockSignal(self.domain) if self.domain != "comb" else Const(0),
i_EN=self.en,
i_ADDR=self.addr,
o_DATA=self.data,
)
if self.domain == "comb":
# Asynchronous port
f.add_statements(self.data.eq(self.memory._array[self.addr]))
f.add_driver(self.data)
elif not self.transparent:
# Synchronous, read-before-write port
f.add_statements(
Switch(self.en, {
1: self.data.eq(self.memory._array[self.addr])
})
)
f.add_driver(self.data, self.domain)
else:
# Synchronous, write-through port
# This model is a bit unconventional. We model transparent ports as asynchronous ports
# that are latched when the clock is high. This isn't exactly correct, but it is very
# close to the correct behavior of a transparent port, and the difference should only
# be observable in pathological cases of clock gating. A register is injected to
# the address input to achieve the correct address-to-data latency. Also, the reset
# value of the data output is forcibly set to the 0th initial value, if any--note that
# many FPGAs do not guarantee this behavior!
if len(self.memory.init) > 0:
self.data.reset = operator.index(self.memory.init[0])
latch_addr = Signal.like(self.addr)
f.add_statements(
latch_addr.eq(self.addr),
Switch(ClockSignal(self.domain), {
0: self.data.eq(self.data),
1: self.data.eq(self.memory._array[latch_addr]),
}),
)
f.add_driver(latch_addr, self.domain)
f.add_driver(self.data)
return f
class WritePort(Elaboratable):
"""A memory write port.
Parameters
----------
memory : :class:`Memory`
Memory associated with the port.
domain : str
Clock domain. Defaults to ``"sync"``. Writes have a latency of 1 clock cycle.
granularity : int
Port granularity. Defaults to ``memory.width``. Write data is split evenly in
``memory.width // granularity`` chunks, which can be updated independently.
Attributes
----------
memory : :class:`Memory`
domain : str
granularity : int
addr : Signal(range(memory.depth)), in
Write address.
data : Signal(memory.width), in
Write data.
en : Signal(memory.width // granularity), in
Write enable. Each bit selects a non-overlapping chunk of ``granularity`` bits on the
``data`` signal, which is written to memory at ``addr``. Unselected chunks are ignored.
Exceptions
----------
Raises :exn:`ValueError` if the write port granularity is greater than memory width, or does not
divide memory width evenly.
"""
def __init__(self, memory, *, domain="sync", granularity=None, src_loc_at=0):
if granularity is None:
granularity = memory.width
if not isinstance(granularity, int) or granularity < 0:
raise TypeError("Write port granularity must be a non-negative integer, not {!r}"
.format(granularity))
if granularity > memory.width:
raise ValueError("Write port granularity must not be greater than memory width "
"({} > {})"
.format(granularity, memory.width))
if memory.width // granularity * granularity != memory.width:
raise ValueError("Write port granularity must divide memory width evenly")
self.memory = memory
self.domain = domain
self.granularity = granularity
self.addr = Signal(range(memory.depth),
name="{}_w_addr".format(memory.name), src_loc_at=1 + src_loc_at)
self.data = Signal(memory.width,
name="{}_w_data".format(memory.name), src_loc_at=1 + src_loc_at)
self.en = Signal(memory.width // granularity,
name="{}_w_en".format(memory.name), src_loc_at=1 + src_loc_at)
def elaborate(self, platform):
f = Instance("$memwr",
p_MEMID=self.memory,
p_ABITS=self.addr.width,
p_WIDTH=self.data.width,
p_CLK_ENABLE=1,
p_CLK_POLARITY=1,
p_PRIORITY=0,
i_CLK=ClockSignal(self.domain),
i_EN=Cat(Repl(en_bit, self.granularity) for en_bit in self.en),
i_ADDR=self.addr,
i_DATA=self.data,
)
if len(self.en) > 1:
for index, en_bit in enumerate(self.en):
offset = index * self.granularity
bits = slice(offset, offset + self.granularity)
write_data = self.memory._array[self.addr][bits].eq(self.data[bits])
f.add_statements(Switch(en_bit, { 1: write_data }))
else:
write_data = self.memory._array[self.addr].eq(self.data)
f.add_statements(Switch(self.en, { 1: write_data }))
for signal in self.memory._array:
f.add_driver(signal, self.domain)
return f
class DummyPort:
"""Dummy memory port.
This port can be used in place of either a read or a write port for testing and verification.
It does not include any read/write port specific attributes, i.e. none besides ``"domain"``;
any such attributes may be set manually.
"""
def __init__(self, *, data_width, addr_width, domain="sync", name=None, granularity=None):
self.domain = domain
if granularity is None:
granularity = data_width
if name is None:
name = tracer.get_var_name(depth=2, default="dummy")
self.addr = Signal(addr_width,
name="{}_addr".format(name), src_loc_at=1)
self.data = Signal(data_width,
name="{}_data".format(name), src_loc_at=1)
self.en = Signal(data_width // granularity,
name="{}_en".format(name), src_loc_at=1)

278
amaranth/hdl/rec.py Normal file
View file

@ -0,0 +1,278 @@
from enum import Enum
from collections import OrderedDict
from functools import reduce, wraps
from .. import tracer
from .._utils import union
from .ast import *
__all__ = ["Direction", "DIR_NONE", "DIR_FANOUT", "DIR_FANIN", "Layout", "Record"]
Direction = Enum('Direction', ('NONE', 'FANOUT', 'FANIN'))
DIR_NONE = Direction.NONE
DIR_FANOUT = Direction.FANOUT
DIR_FANIN = Direction.FANIN
class Layout:
@staticmethod
def cast(obj, *, src_loc_at=0):
if isinstance(obj, Layout):
return obj
return Layout(obj, src_loc_at=1 + src_loc_at)
def __init__(self, fields, *, src_loc_at=0):
self.fields = OrderedDict()
for field in fields:
if not isinstance(field, tuple) or len(field) not in (2, 3):
raise TypeError("Field {!r} has invalid layout: should be either "
"(name, shape) or (name, shape, direction)"
.format(field))
if len(field) == 2:
name, shape = field
direction = DIR_NONE
if isinstance(shape, list):
shape = Layout.cast(shape)
else:
name, shape, direction = field
if not isinstance(direction, Direction):
raise TypeError("Field {!r} has invalid direction: should be a Direction "
"instance like DIR_FANIN"
.format(field))
if not isinstance(name, str):
raise TypeError("Field {!r} has invalid name: should be a string"
.format(field))
if not isinstance(shape, Layout):
try:
# Check provided shape by calling Shape.cast and checking for exception
Shape.cast(shape, src_loc_at=1 + src_loc_at)
except Exception:
raise TypeError("Field {!r} has invalid shape: should be castable to Shape "
"or a list of fields of a nested record"
.format(field))
if name in self.fields:
raise NameError("Field {!r} has a name that is already present in the layout"
.format(field))
self.fields[name] = (shape, direction)
def __getitem__(self, item):
if isinstance(item, tuple):
return Layout([
(name, shape, dir)
for (name, (shape, dir)) in self.fields.items()
if name in item
])
return self.fields[item]
def __iter__(self):
for name, (shape, dir) in self.fields.items():
yield (name, shape, dir)
def __eq__(self, other):
return self.fields == other.fields
def __repr__(self):
field_reprs = []
for name, shape, dir in self:
if dir == DIR_NONE:
field_reprs.append("({!r}, {!r})".format(name, shape))
else:
field_reprs.append("({!r}, {!r}, Direction.{})".format(name, shape, dir.name))
return "Layout([{}])".format(", ".join(field_reprs))
class Record(ValueCastable):
@staticmethod
def like(other, *, name=None, name_suffix=None, src_loc_at=0):
if name is not None:
new_name = str(name)
elif name_suffix is not None:
new_name = other.name + str(name_suffix)
else:
new_name = tracer.get_var_name(depth=2 + src_loc_at, default=None)
def concat(a, b):
if a is None:
return b
return "{}__{}".format(a, b)
fields = {}
for field_name in other.fields:
field = other[field_name]
if isinstance(field, Record):
fields[field_name] = Record.like(field, name=concat(new_name, field_name),
src_loc_at=1 + src_loc_at)
else:
fields[field_name] = Signal.like(field, name=concat(new_name, field_name),
src_loc_at=1 + src_loc_at)
return Record(other.layout, name=new_name, fields=fields, src_loc_at=1)
def __init__(self, layout, *, name=None, fields=None, src_loc_at=0):
if name is None:
name = tracer.get_var_name(depth=2 + src_loc_at, default=None)
self.name = name
self.src_loc = tracer.get_src_loc(src_loc_at)
def concat(a, b):
if a is None:
return b
return "{}__{}".format(a, b)
self.layout = Layout.cast(layout, src_loc_at=1 + src_loc_at)
self.fields = OrderedDict()
for field_name, field_shape, field_dir in self.layout:
if fields is not None and field_name in fields:
field = fields[field_name]
if isinstance(field_shape, Layout):
assert isinstance(field, Record) and field_shape == field.layout
else:
assert isinstance(field, Signal) and Shape.cast(field_shape) == field.shape()
self.fields[field_name] = field
else:
if isinstance(field_shape, Layout):
self.fields[field_name] = Record(field_shape, name=concat(name, field_name),
src_loc_at=1 + src_loc_at)
else:
self.fields[field_name] = Signal(field_shape, name=concat(name, field_name),
src_loc_at=1 + src_loc_at)
def __getattr__(self, name):
return self[name]
def __getitem__(self, item):
if isinstance(item, str):
try:
return self.fields[item]
except KeyError:
if self.name is None:
reference = "Unnamed record"
else:
reference = "Record '{}'".format(self.name)
raise AttributeError("{} does not have a field '{}'. Did you mean one of: {}?"
.format(reference, item, ", ".join(self.fields))) from None
elif isinstance(item, tuple):
return Record(self.layout[item], fields={
field_name: field_value
for field_name, field_value in self.fields.items()
if field_name in item
})
else:
try:
return Value.__getitem__(self, item)
except KeyError:
if self.name is None:
reference = "Unnamed record"
else:
reference = "Record '{}'".format(self.name)
raise AttributeError("{} does not have a field '{}'. Did you mean one of: {}?"
.format(reference, item, ", ".join(self.fields))) from None
@ValueCastable.lowermethod
def as_value(self):
return Cat(self.fields.values())
def __len__(self):
return len(self.as_value())
def _lhs_signals(self):
return union((f._lhs_signals() for f in self.fields.values()), start=SignalSet())
def _rhs_signals(self):
return union((f._rhs_signals() for f in self.fields.values()), start=SignalSet())
def __repr__(self):
fields = []
for field_name, field in self.fields.items():
if isinstance(field, Signal):
fields.append(field_name)
else:
fields.append(repr(field))
name = self.name
if name is None:
name = "<unnamed>"
return "(rec {} {})".format(name, " ".join(fields))
def shape(self):
return self.as_value().shape()
def connect(self, *subordinates, include=None, exclude=None):
def rec_name(record):
if record.name is None:
return "unnamed record"
else:
return "record '{}'".format(record.name)
for field in include or {}:
if field not in self.fields:
raise AttributeError("Cannot include field '{}' because it is not present in {}"
.format(field, rec_name(self)))
for field in exclude or {}:
if field not in self.fields:
raise AttributeError("Cannot exclude field '{}' because it is not present in {}"
.format(field, rec_name(self)))
stmts = []
for field in self.fields:
if include is not None and field not in include:
continue
if exclude is not None and field in exclude:
continue
shape, direction = self.layout[field]
if not isinstance(shape, Layout) and direction == DIR_NONE:
raise TypeError("Cannot connect field '{}' of {} because it does not have "
"a direction"
.format(field, rec_name(self)))
item = self.fields[field]
subord_items = []
for subord in subordinates:
if field not in subord.fields:
raise AttributeError("Cannot connect field '{}' of {} to subordinate {} "
"because the subordinate record does not have this field"
.format(field, rec_name(self), rec_name(subord)))
subord_items.append(subord.fields[field])
if isinstance(shape, Layout):
sub_include = include[field] if include and field in include else None
sub_exclude = exclude[field] if exclude and field in exclude else None
stmts += item.connect(*subord_items, include=sub_include, exclude=sub_exclude)
else:
if direction == DIR_FANOUT:
stmts += [sub_item.eq(item) for sub_item in subord_items]
if direction == DIR_FANIN:
stmts += [item.eq(reduce(lambda a, b: a | b, subord_items))]
return stmts
def _valueproxy(name):
value_func = getattr(Value, name)
@wraps(value_func)
def _wrapper(self, *args, **kwargs):
return value_func(Value.cast(self), *args, **kwargs)
return _wrapper
for name in [
"__bool__",
"__invert__", "__neg__",
"__add__", "__radd__", "__sub__", "__rsub__",
"__mul__", "__rmul__",
"__mod__", "__rmod__", "__floordiv__", "__rfloordiv__",
"__lshift__", "__rlshift__", "__rshift__", "__rrshift__",
"__and__", "__rand__", "__xor__", "__rxor__", "__or__", "__ror__",
"__eq__", "__ne__", "__lt__", "__le__", "__gt__", "__ge__",
"__abs__", "__len__",
"as_unsigned", "as_signed", "bool", "any", "all", "xor", "implies",
"bit_select", "word_select", "matches",
"shift_left", "shift_right", "rotate_left", "rotate_right", "eq"
]:
setattr(Record, name, _valueproxy(name))
del _valueproxy
del name

743
amaranth/hdl/xfrm.py Normal file
View file

@ -0,0 +1,743 @@
from abc import ABCMeta, abstractmethod
from collections import OrderedDict
from collections.abc import Iterable
from .._utils import flatten
from .. import tracer
from .ast import *
from .ast import _StatementList
from .cd import *
from .ir import *
from .rec import *
__all__ = ["ValueVisitor", "ValueTransformer",
"StatementVisitor", "StatementTransformer",
"FragmentTransformer",
"TransformedElaboratable",
"DomainCollector", "DomainRenamer", "DomainLowerer",
"SampleDomainInjector", "SampleLowerer",
"SwitchCleaner", "LHSGroupAnalyzer", "LHSGroupFilter",
"ResetInserter", "EnableInserter"]
class ValueVisitor(metaclass=ABCMeta):
@abstractmethod
def on_Const(self, value):
pass # :nocov:
@abstractmethod
def on_AnyConst(self, value):
pass # :nocov:
@abstractmethod
def on_AnySeq(self, value):
pass # :nocov:
@abstractmethod
def on_Signal(self, value):
pass # :nocov:
@abstractmethod
def on_ClockSignal(self, value):
pass # :nocov:
@abstractmethod
def on_ResetSignal(self, value):
pass # :nocov:
@abstractmethod
def on_Operator(self, value):
pass # :nocov:
@abstractmethod
def on_Slice(self, value):
pass # :nocov:
@abstractmethod
def on_Part(self, value):
pass # :nocov:
@abstractmethod
def on_Cat(self, value):
pass # :nocov:
@abstractmethod
def on_Repl(self, value):
pass # :nocov:
@abstractmethod
def on_ArrayProxy(self, value):
pass # :nocov:
@abstractmethod
def on_Sample(self, value):
pass # :nocov:
@abstractmethod
def on_Initial(self, value):
pass # :nocov:
def on_unknown_value(self, value):
raise TypeError("Cannot transform value {!r}".format(value)) # :nocov:
def replace_value_src_loc(self, value, new_value):
return True
def on_value(self, value):
if type(value) is Const:
new_value = self.on_Const(value)
elif type(value) is AnyConst:
new_value = self.on_AnyConst(value)
elif type(value) is AnySeq:
new_value = self.on_AnySeq(value)
elif isinstance(value, Signal):
# Uses `isinstance()` and not `type() is` because amaranth.compat requires it.
new_value = self.on_Signal(value)
elif type(value) is ClockSignal:
new_value = self.on_ClockSignal(value)
elif type(value) is ResetSignal:
new_value = self.on_ResetSignal(value)
elif type(value) is Operator:
new_value = self.on_Operator(value)
elif type(value) is Slice:
new_value = self.on_Slice(value)
elif type(value) is Part:
new_value = self.on_Part(value)
elif type(value) is Cat:
new_value = self.on_Cat(value)
elif type(value) is Repl:
new_value = self.on_Repl(value)
elif type(value) is ArrayProxy:
new_value = self.on_ArrayProxy(value)
elif type(value) is Sample:
new_value = self.on_Sample(value)
elif type(value) is Initial:
new_value = self.on_Initial(value)
elif isinstance(value, UserValue):
# Uses `isinstance()` and not `type() is` to allow inheriting.
new_value = self.on_value(value._lazy_lower())
else:
new_value = self.on_unknown_value(value)
if isinstance(new_value, Value) and self.replace_value_src_loc(value, new_value):
new_value.src_loc = value.src_loc
return new_value
def __call__(self, value):
return self.on_value(value)
class ValueTransformer(ValueVisitor):
def on_Const(self, value):
return value
def on_AnyConst(self, value):
return value
def on_AnySeq(self, value):
return value
def on_Signal(self, value):
return value
def on_ClockSignal(self, value):
return value
def on_ResetSignal(self, value):
return value
def on_Operator(self, value):
return Operator(value.operator, [self.on_value(o) for o in value.operands])
def on_Slice(self, value):
return Slice(self.on_value(value.value), value.start, value.stop)
def on_Part(self, value):
return Part(self.on_value(value.value), self.on_value(value.offset),
value.width, value.stride)
def on_Cat(self, value):
return Cat(self.on_value(o) for o in value.parts)
def on_Repl(self, value):
return Repl(self.on_value(value.value), value.count)
def on_ArrayProxy(self, value):
return ArrayProxy([self.on_value(elem) for elem in value._iter_as_values()],
self.on_value(value.index))
def on_Sample(self, value):
return Sample(self.on_value(value.value), value.clocks, value.domain)
def on_Initial(self, value):
return value
class StatementVisitor(metaclass=ABCMeta):
@abstractmethod
def on_Assign(self, stmt):
pass # :nocov:
@abstractmethod
def on_Assert(self, stmt):
pass # :nocov:
@abstractmethod
def on_Assume(self, stmt):
pass # :nocov:
@abstractmethod
def on_Cover(self, stmt):
pass # :nocov:
@abstractmethod
def on_Switch(self, stmt):
pass # :nocov:
@abstractmethod
def on_statements(self, stmts):
pass # :nocov:
def on_unknown_statement(self, stmt):
raise TypeError("Cannot transform statement {!r}".format(stmt)) # :nocov:
def replace_statement_src_loc(self, stmt, new_stmt):
return True
def on_statement(self, stmt):
if type(stmt) is Assign:
new_stmt = self.on_Assign(stmt)
elif type(stmt) is Assert:
new_stmt = self.on_Assert(stmt)
elif type(stmt) is Assume:
new_stmt = self.on_Assume(stmt)
elif type(stmt) is Cover:
new_stmt = self.on_Cover(stmt)
elif isinstance(stmt, Switch):
# Uses `isinstance()` and not `type() is` because amaranth.compat requires it.
new_stmt = self.on_Switch(stmt)
elif isinstance(stmt, Iterable):
new_stmt = self.on_statements(stmt)
else:
new_stmt = self.on_unknown_statement(stmt)
if isinstance(new_stmt, Statement) and self.replace_statement_src_loc(stmt, new_stmt):
new_stmt.src_loc = stmt.src_loc
if isinstance(new_stmt, Switch) and isinstance(stmt, Switch):
new_stmt.case_src_locs = stmt.case_src_locs
if isinstance(new_stmt, Property):
new_stmt._MustUse__used = True
return new_stmt
def __call__(self, stmt):
return self.on_statement(stmt)
class StatementTransformer(StatementVisitor):
def on_value(self, value):
return value
def on_Assign(self, stmt):
return Assign(self.on_value(stmt.lhs), self.on_value(stmt.rhs))
def on_Assert(self, stmt):
return Assert(self.on_value(stmt.test), _check=stmt._check, _en=stmt._en)
def on_Assume(self, stmt):
return Assume(self.on_value(stmt.test), _check=stmt._check, _en=stmt._en)
def on_Cover(self, stmt):
return Cover(self.on_value(stmt.test), _check=stmt._check, _en=stmt._en)
def on_Switch(self, stmt):
cases = OrderedDict((k, self.on_statement(s)) for k, s in stmt.cases.items())
return Switch(self.on_value(stmt.test), cases)
def on_statements(self, stmts):
return _StatementList(flatten(self.on_statement(stmt) for stmt in stmts))
class FragmentTransformer:
def map_subfragments(self, fragment, new_fragment):
for subfragment, name in fragment.subfragments:
new_fragment.add_subfragment(self(subfragment), name)
def map_ports(self, fragment, new_fragment):
for port, dir in fragment.ports.items():
new_fragment.add_ports(port, dir=dir)
def map_named_ports(self, fragment, new_fragment):
if hasattr(self, "on_value"):
for name, (value, dir) in fragment.named_ports.items():
new_fragment.named_ports[name] = self.on_value(value), dir
else:
new_fragment.named_ports = OrderedDict(fragment.named_ports.items())
def map_domains(self, fragment, new_fragment):
for domain in fragment.iter_domains():
new_fragment.add_domains(fragment.domains[domain])
def map_statements(self, fragment, new_fragment):
if hasattr(self, "on_statement"):
new_fragment.add_statements(map(self.on_statement, fragment.statements))
else:
new_fragment.add_statements(fragment.statements)
def map_drivers(self, fragment, new_fragment):
for domain, signal in fragment.iter_drivers():
new_fragment.add_driver(signal, domain)
def on_fragment(self, fragment):
if isinstance(fragment, Instance):
new_fragment = Instance(fragment.type)
new_fragment.parameters = OrderedDict(fragment.parameters)
self.map_named_ports(fragment, new_fragment)
else:
new_fragment = Fragment()
new_fragment.flatten = fragment.flatten
new_fragment.attrs = OrderedDict(fragment.attrs)
self.map_ports(fragment, new_fragment)
self.map_subfragments(fragment, new_fragment)
self.map_domains(fragment, new_fragment)
self.map_statements(fragment, new_fragment)
self.map_drivers(fragment, new_fragment)
return new_fragment
def __call__(self, value, *, src_loc_at=0):
if isinstance(value, Fragment):
return self.on_fragment(value)
elif isinstance(value, TransformedElaboratable):
value._transforms_.append(self)
return value
elif hasattr(value, "elaborate"):
value = TransformedElaboratable(value, src_loc_at=1 + src_loc_at)
value._transforms_.append(self)
return value
else:
raise AttributeError("Object {!r} cannot be elaborated".format(value))
class TransformedElaboratable(Elaboratable):
def __init__(self, elaboratable, *, src_loc_at=0):
assert hasattr(elaboratable, "elaborate")
# Fields prefixed and suffixed with underscore to avoid as many conflicts with the inner
# object as possible, since we're forwarding attribute requests to it.
self._elaboratable_ = elaboratable
self._transforms_ = []
def __getattr__(self, attr):
return getattr(self._elaboratable_, attr)
def elaborate(self, platform):
fragment = Fragment.get(self._elaboratable_, platform)
for transform in self._transforms_:
fragment = transform(fragment)
return fragment
class DomainCollector(ValueVisitor, StatementVisitor):
def __init__(self):
self.used_domains = set()
self.defined_domains = set()
self._local_domains = set()
def _add_used_domain(self, domain_name):
if domain_name is None:
return
if domain_name in self._local_domains:
return
self.used_domains.add(domain_name)
def on_ignore(self, value):
pass
on_Const = on_ignore
on_AnyConst = on_ignore
on_AnySeq = on_ignore
on_Signal = on_ignore
def on_ClockSignal(self, value):
self._add_used_domain(value.domain)
def on_ResetSignal(self, value):
self._add_used_domain(value.domain)
def on_Operator(self, value):
for o in value.operands:
self.on_value(o)
def on_Slice(self, value):
self.on_value(value.value)
def on_Part(self, value):
self.on_value(value.value)
self.on_value(value.offset)
def on_Cat(self, value):
for o in value.parts:
self.on_value(o)
def on_Repl(self, value):
self.on_value(value.value)
def on_ArrayProxy(self, value):
for elem in value._iter_as_values():
self.on_value(elem)
self.on_value(value.index)
def on_Sample(self, value):
self.on_value(value.value)
def on_Initial(self, value):
pass
def on_Assign(self, stmt):
self.on_value(stmt.lhs)
self.on_value(stmt.rhs)
def on_property(self, stmt):
self.on_value(stmt.test)
on_Assert = on_property
on_Assume = on_property
on_Cover = on_property
def on_Switch(self, stmt):
self.on_value(stmt.test)
for stmts in stmt.cases.values():
self.on_statement(stmts)
def on_statements(self, stmts):
for stmt in stmts:
self.on_statement(stmt)
def on_fragment(self, fragment):
if isinstance(fragment, Instance):
for name, (value, dir) in fragment.named_ports.items():
self.on_value(value)
old_local_domains, self._local_domains = self._local_domains, set(self._local_domains)
for domain_name, domain in fragment.domains.items():
if domain.local:
self._local_domains.add(domain_name)
else:
self.defined_domains.add(domain_name)
self.on_statements(fragment.statements)
for domain_name in fragment.drivers:
self._add_used_domain(domain_name)
for subfragment, name in fragment.subfragments:
self.on_fragment(subfragment)
self._local_domains = old_local_domains
def __call__(self, fragment):
self.on_fragment(fragment)
class DomainRenamer(FragmentTransformer, ValueTransformer, StatementTransformer):
def __init__(self, domain_map):
if isinstance(domain_map, str):
domain_map = {"sync": domain_map}
for src, dst in domain_map.items():
if src == "comb":
raise ValueError("Domain '{}' may not be renamed".format(src))
if dst == "comb":
raise ValueError("Domain '{}' may not be renamed to '{}'".format(src, dst))
self.domain_map = OrderedDict(domain_map)
def on_ClockSignal(self, value):
if value.domain in self.domain_map:
return ClockSignal(self.domain_map[value.domain])
return value
def on_ResetSignal(self, value):
if value.domain in self.domain_map:
return ResetSignal(self.domain_map[value.domain],
allow_reset_less=value.allow_reset_less)
return value
def map_domains(self, fragment, new_fragment):
for domain in fragment.iter_domains():
cd = fragment.domains[domain]
if domain in self.domain_map:
if cd.name == domain:
# Rename the actual ClockDomain object.
cd.rename(self.domain_map[domain])
else:
assert cd.name == self.domain_map[domain]
new_fragment.add_domains(cd)
def map_drivers(self, fragment, new_fragment):
for domain, signals in fragment.drivers.items():
if domain in self.domain_map:
domain = self.domain_map[domain]
for signal in signals:
new_fragment.add_driver(self.on_value(signal), domain)
class DomainLowerer(FragmentTransformer, ValueTransformer, StatementTransformer):
def __init__(self, domains=None):
self.domains = domains
def _resolve(self, domain, context):
if domain not in self.domains:
raise DomainError("Signal {!r} refers to nonexistent domain '{}'"
.format(context, domain))
return self.domains[domain]
def map_drivers(self, fragment, new_fragment):
for domain, signal in fragment.iter_drivers():
new_fragment.add_driver(self.on_value(signal), domain)
def replace_value_src_loc(self, value, new_value):
return not isinstance(value, (ClockSignal, ResetSignal))
def on_ClockSignal(self, value):
domain = self._resolve(value.domain, value)
return domain.clk
def on_ResetSignal(self, value):
domain = self._resolve(value.domain, value)
if domain.rst is None:
if value.allow_reset_less:
return Const(0)
else:
raise DomainError("Signal {!r} refers to reset of reset-less domain '{}'"
.format(value, value.domain))
return domain.rst
def _insert_resets(self, fragment):
for domain_name, signals in fragment.drivers.items():
if domain_name is None:
continue
domain = fragment.domains[domain_name]
if domain.rst is None:
continue
stmts = [signal.eq(Const(signal.reset, signal.width))
for signal in signals if not signal.reset_less]
fragment.add_statements(Switch(domain.rst, {1: stmts}))
def on_fragment(self, fragment):
self.domains = fragment.domains
new_fragment = super().on_fragment(fragment)
self._insert_resets(new_fragment)
return new_fragment
class SampleDomainInjector(ValueTransformer, StatementTransformer):
def __init__(self, domain):
self.domain = domain
def on_Sample(self, value):
if value.domain is not None:
return value
return Sample(value.value, value.clocks, self.domain)
def __call__(self, stmts):
return self.on_statement(stmts)
class SampleLowerer(FragmentTransformer, ValueTransformer, StatementTransformer):
def __init__(self):
self.initial = None
self.sample_cache = None
self.sample_stmts = None
def _name_reset(self, value):
if isinstance(value, Const):
return "c${}".format(value.value), value.value
elif isinstance(value, Signal):
return "s${}".format(value.name), value.reset
elif isinstance(value, ClockSignal):
return "clk", 0
elif isinstance(value, ResetSignal):
return "rst", 1
elif isinstance(value, Initial):
return "init", 0 # Past(Initial()) produces 0, 1, 0, 0, ...
else:
raise NotImplementedError # :nocov:
def on_Sample(self, value):
if value in self.sample_cache:
return self.sample_cache[value]
sampled_value = self.on_value(value.value)
if value.clocks == 0:
sample = sampled_value
else:
assert value.domain is not None
sampled_name, sampled_reset = self._name_reset(value.value)
name = "$sample${}${}${}".format(sampled_name, value.domain, value.clocks)
sample = Signal.like(value.value, name=name, reset_less=True, reset=sampled_reset)
sample.attrs["amaranth.sample_reg"] = True
prev_sample = self.on_Sample(Sample(sampled_value, value.clocks - 1, value.domain))
if value.domain not in self.sample_stmts:
self.sample_stmts[value.domain] = []
self.sample_stmts[value.domain].append(sample.eq(prev_sample))
self.sample_cache[value] = sample
return sample
def on_Initial(self, value):
if self.initial is None:
self.initial = Signal(name="init")
return self.initial
def map_statements(self, fragment, new_fragment):
self.initial = None
self.sample_cache = ValueDict()
self.sample_stmts = OrderedDict()
new_fragment.add_statements(map(self.on_statement, fragment.statements))
for domain, stmts in self.sample_stmts.items():
new_fragment.add_statements(stmts)
for stmt in stmts:
new_fragment.add_driver(stmt.lhs, domain)
if self.initial is not None:
new_fragment.add_subfragment(Instance("$initstate", o_Y=self.initial))
class SwitchCleaner(StatementVisitor):
def on_ignore(self, stmt):
return stmt
on_Assign = on_ignore
on_Assert = on_ignore
on_Assume = on_ignore
on_Cover = on_ignore
def on_Switch(self, stmt):
cases = OrderedDict((k, self.on_statement(s)) for k, s in stmt.cases.items())
if any(len(s) for s in cases.values()):
return Switch(stmt.test, cases)
def on_statements(self, stmts):
stmts = flatten(self.on_statement(stmt) for stmt in stmts)
return _StatementList(stmt for stmt in stmts if stmt is not None)
class LHSGroupAnalyzer(StatementVisitor):
def __init__(self):
self.signals = SignalDict()
self.unions = OrderedDict()
def find(self, signal):
if signal not in self.signals:
self.signals[signal] = len(self.signals)
group = self.signals[signal]
while group in self.unions:
group = self.unions[group]
self.signals[signal] = group
return group
def unify(self, root, *leaves):
root_group = self.find(root)
for leaf in leaves:
leaf_group = self.find(leaf)
if root_group == leaf_group:
continue
self.unions[leaf_group] = root_group
def groups(self):
groups = OrderedDict()
for signal in self.signals:
group = self.find(signal)
if group not in groups:
groups[group] = SignalSet()
groups[group].add(signal)
return groups
def on_Assign(self, stmt):
lhs_signals = stmt._lhs_signals()
if lhs_signals:
self.unify(*stmt._lhs_signals())
def on_property(self, stmt):
lhs_signals = stmt._lhs_signals()
if lhs_signals:
self.unify(*stmt._lhs_signals())
on_Assert = on_property
on_Assume = on_property
on_Cover = on_property
def on_Switch(self, stmt):
for case_stmts in stmt.cases.values():
self.on_statements(case_stmts)
def on_statements(self, stmts):
for stmt in stmts:
self.on_statement(stmt)
def __call__(self, stmts):
self.on_statements(stmts)
return self.groups()
class LHSGroupFilter(SwitchCleaner):
def __init__(self, signals):
self.signals = signals
def on_Assign(self, stmt):
# The invariant provided by LHSGroupAnalyzer is that all signals that ever appear together
# on LHS are a part of the same group, so it is sufficient to check any of them.
lhs_signals = stmt.lhs._lhs_signals()
if lhs_signals:
any_lhs_signal = next(iter(lhs_signals))
if any_lhs_signal in self.signals:
return stmt
def on_property(self, stmt):
any_lhs_signal = next(iter(stmt._lhs_signals()))
if any_lhs_signal in self.signals:
return stmt
on_Assert = on_property
on_Assume = on_property
on_Cover = on_property
class _ControlInserter(FragmentTransformer):
def __init__(self, controls):
self.src_loc = None
if isinstance(controls, Value):
controls = {"sync": controls}
self.controls = OrderedDict(controls)
def on_fragment(self, fragment):
new_fragment = super().on_fragment(fragment)
for domain, signals in fragment.drivers.items():
if domain is None or domain not in self.controls:
continue
self._insert_control(new_fragment, domain, signals)
return new_fragment
def _insert_control(self, fragment, domain, signals):
raise NotImplementedError # :nocov:
def __call__(self, value, *, src_loc_at=0):
self.src_loc = tracer.get_src_loc(src_loc_at=src_loc_at)
return super().__call__(value, src_loc_at=1 + src_loc_at)
class ResetInserter(_ControlInserter):
def _insert_control(self, fragment, domain, signals):
stmts = [s.eq(Const(s.reset, s.width)) for s in signals if not s.reset_less]
fragment.add_statements(Switch(self.controls[domain], {1: stmts}, src_loc=self.src_loc))
class EnableInserter(_ControlInserter):
def _insert_control(self, fragment, domain, signals):
stmts = [s.eq(s) for s in signals]
fragment.add_statements(Switch(self.controls[domain], {0: stmts}, src_loc=self.src_loc))
def on_fragment(self, fragment):
new_fragment = super().on_fragment(fragment)
if isinstance(new_fragment, Instance) and new_fragment.type in ("$memrd", "$memwr"):
clk_port, clk_dir = new_fragment.named_ports["CLK"]
if isinstance(clk_port, ClockSignal) and clk_port.domain in self.controls:
en_port, en_dir = new_fragment.named_ports["EN"]
en_port = Mux(self.controls[clk_port.domain], en_port, Const(0, len(en_port)))
new_fragment.named_ports["EN"] = en_port, en_dir
return new_fragment

0
amaranth/lib/__init__.py Normal file
View file

267
amaranth/lib/cdc.py Normal file
View file

@ -0,0 +1,267 @@
from .. import *
__all__ = ["FFSynchronizer", "AsyncFFSynchronizer", "ResetSynchronizer", "PulseSynchronizer"]
def _check_stages(stages):
if not isinstance(stages, int) or stages < 1:
raise TypeError("Synchronization stage count must be a positive integer, not {!r}"
.format(stages))
if stages < 2:
raise ValueError("Synchronization stage count may not safely be less than 2")
class FFSynchronizer(Elaboratable):
"""Resynchronise a signal to a different clock domain.
Consists of a chain of flip-flops. Eliminates metastabilities at the output, but provides
no other guarantee as to the safe domain-crossing of a signal.
Parameters
----------
i : Signal(n), in
Signal to be resynchronised.
o : Signal(n), out
Signal connected to synchroniser output.
o_domain : str
Name of output clock domain.
reset : int
Reset value of the flip-flops. On FPGAs, even if ``reset_less`` is True,
the :class:`FFSynchronizer` is still set to this value during initialization.
reset_less : bool
If ``True`` (the default), this :class:`FFSynchronizer` is unaffected by ``o_domain``
reset. See "Note on Reset" below.
stages : int
Number of synchronization stages between input and output. The lowest safe number is 2,
with higher numbers reducing MTBF further, at the cost of increased latency.
max_input_delay : None or float
Maximum delay from the input signal's clock to the first synchronization stage, in seconds.
If specified and the platform does not support it, elaboration will fail.
Platform override
-----------------
Define the ``get_ff_sync`` platform method to override the implementation of
:class:`FFSynchronizer`, e.g. to instantiate library cells directly.
Note on Reset
-------------
:class:`FFSynchronizer` is non-resettable by default. Usually this is the safest option;
on FPGAs the :class:`FFSynchronizer` will still be initialized to its ``reset`` value when
the FPGA loads its configuration.
However, in designs where the value of the :class:`FFSynchronizer` must be valid immediately
after reset, consider setting ``reset_less`` to False if any of the following is true:
- You are targeting an ASIC, or an FPGA that does not allow arbitrary initial flip-flop states;
- Your design features warm (non-power-on) resets of ``o_domain``, so the one-time
initialization at power on is insufficient;
- Your design features a sequenced reset, and the :class:`FFSynchronizer` must maintain
its reset value until ``o_domain`` reset specifically is deasserted.
:class:`FFSynchronizer` is reset by the ``o_domain`` reset only.
"""
def __init__(self, i, o, *, o_domain="sync", reset=0, reset_less=True, stages=2,
max_input_delay=None):
_check_stages(stages)
self.i = i
self.o = o
self._reset = reset
self._reset_less = reset_less
self._o_domain = o_domain
self._stages = stages
self._max_input_delay = max_input_delay
def elaborate(self, platform):
if hasattr(platform, "get_ff_sync"):
return platform.get_ff_sync(self)
if self._max_input_delay is not None:
raise NotImplementedError("Platform '{}' does not support constraining input delay "
"for FFSynchronizer"
.format(type(platform).__name__))
m = Module()
flops = [Signal(self.i.shape(), name="stage{}".format(index),
reset=self._reset, reset_less=self._reset_less)
for index in range(self._stages)]
for i, o in zip((self.i, *flops), flops):
m.d[self._o_domain] += o.eq(i)
m.d.comb += self.o.eq(flops[-1])
return m
class AsyncFFSynchronizer(Elaboratable):
"""Synchronize deassertion of an asynchronous signal.
The signal driven by the :class:`AsyncFFSynchronizer` is asserted asynchronously and deasserted
synchronously, eliminating metastability during deassertion.
This synchronizer is primarily useful for resets and reset-like signals.
Parameters
----------
i : Signal(1), in
Asynchronous input signal, to be synchronized.
o : Signal(1), out
Synchronously released output signal.
o_domain : str
Name of clock domain to synchronize to.
stages : int, >=2
Number of synchronization stages between input and output. The lowest safe number is 2,
with higher numbers reducing MTBF further, at the cost of increased deassertion latency.
async_edge : str
The edge of the input signal which causes the output to be set. Must be one of "pos" or "neg".
max_input_delay : None or float
Maximum delay from the input signal's clock to the first synchronization stage, in seconds.
If specified and the platform does not support it, elaboration will fail.
Platform override
-----------------
Define the ``get_async_ff_sync`` platform method to override the implementation of
:class:`AsyncFFSynchronizer`, e.g. to instantiate library cells directly.
"""
def __init__(self, i, o, *, o_domain="sync", stages=2, async_edge="pos", max_input_delay=None):
_check_stages(stages)
if len(i) != 1:
raise ValueError("AsyncFFSynchronizer input width must be 1, not {}"
.format(len(i)))
if len(o) != 1:
raise ValueError("AsyncFFSynchronizer output width must be 1, not {}"
.format(len(o)))
if async_edge not in ("pos", "neg"):
raise ValueError("AsyncFFSynchronizer async edge must be one of 'pos' or 'neg', "
"not {!r}"
.format(async_edge))
self.i = i
self.o = o
self._o_domain = o_domain
self._stages = stages
self._edge = async_edge
self._max_input_delay = max_input_delay
def elaborate(self, platform):
if hasattr(platform, "get_async_ff_sync"):
return platform.get_async_ff_sync(self)
if self._max_input_delay is not None:
raise NotImplementedError("Platform '{}' does not support constraining input delay "
"for AsyncFFSynchronizer"
.format(type(platform).__name__))
m = Module()
m.domains += ClockDomain("async_ff", async_reset=True, local=True)
flops = [Signal(1, name="stage{}".format(index), reset=1)
for index in range(self._stages)]
for i, o in zip((0, *flops), flops):
m.d.async_ff += o.eq(i)
if self._edge == "pos":
m.d.comb += ResetSignal("async_ff").eq(self.i)
else:
m.d.comb += ResetSignal("async_ff").eq(~self.i)
m.d.comb += [
ClockSignal("async_ff").eq(ClockSignal(self._o_domain)),
self.o.eq(flops[-1])
]
return m
class ResetSynchronizer(Elaboratable):
"""Synchronize deassertion of a clock domain reset.
The reset of the clock domain driven by the :class:`ResetSynchronizer` is asserted
asynchronously and deasserted synchronously, eliminating metastability during deassertion.
The driven clock domain could use a reset that is asserted either synchronously or
asynchronously; a reset is always deasserted synchronously. A domain with an asynchronously
asserted reset is useful if the clock of the domain may be gated, yet the domain still
needs to be reset promptly; otherwise, synchronously asserted reset (the default) should
be used.
Parameters
----------
arst : Signal(1), in
Asynchronous reset signal, to be synchronized.
domain : str
Name of clock domain to reset.
stages : int, >=2
Number of synchronization stages between input and output. The lowest safe number is 2,
with higher numbers reducing MTBF further, at the cost of increased deassertion latency.
max_input_delay : None or float
Maximum delay from the input signal's clock to the first synchronization stage, in seconds.
If specified and the platform does not support it, elaboration will fail.
Platform override
-----------------
Define the ``get_reset_sync`` platform method to override the implementation of
:class:`ResetSynchronizer`, e.g. to instantiate library cells directly.
"""
def __init__(self, arst, *, domain="sync", stages=2, max_input_delay=None):
_check_stages(stages)
self.arst = arst
self._domain = domain
self._stages = stages
self._max_input_delay = max_input_delay
def elaborate(self, platform):
return AsyncFFSynchronizer(self.arst, ResetSignal(self._domain), o_domain=self._domain,
stages=self._stages, max_input_delay=self._max_input_delay)
class PulseSynchronizer(Elaboratable):
"""A one-clock pulse on the input produces a one-clock pulse on the output.
If the output clock is faster than the input clock, then the input may be safely asserted at
100% duty cycle. Otherwise, if the clock ratio is `n`:1, the input may be asserted at most once
in every `n` input clocks, else pulses may be dropped. Other than this there is no constraint
on the ratio of input and output clock frequency.
Parameters
----------
i_domain : str
Name of input clock domain.
o_domain : str
Name of output clock domain.
stages : int, >=2
Number of synchronization stages between input and output. The lowest safe number is 2,
with higher numbers reducing MTBF further, at the cost of increased deassertion latency.
"""
def __init__(self, i_domain, o_domain, *, stages=2):
_check_stages(stages)
self.i = Signal()
self.o = Signal()
self._i_domain = i_domain
self._o_domain = o_domain
self._stages = stages
def elaborate(self, platform):
m = Module()
i_toggle = Signal()
o_toggle = Signal()
r_toggle = Signal()
ff_sync = m.submodules.ff_sync = \
FFSynchronizer(i_toggle, o_toggle, o_domain=self._o_domain, stages=self._stages)
m.d[self._i_domain] += i_toggle.eq(i_toggle ^ self.i)
m.d[self._o_domain] += r_toggle.eq(o_toggle)
m.d.comb += self.o.eq(o_toggle ^ r_toggle)
return m

186
amaranth/lib/coding.py Normal file
View file

@ -0,0 +1,186 @@
"""Encoders and decoders between binary and one-hot representation."""
from .. import *
__all__ = [
"Encoder", "Decoder",
"PriorityEncoder", "PriorityDecoder",
"GrayEncoder", "GrayDecoder",
]
class Encoder(Elaboratable):
"""Encode one-hot to binary.
If one bit in ``i`` is asserted, ``n`` is low and ``o`` indicates the asserted bit.
Otherwise, ``n`` is high and ``o`` is ``0``.
Parameters
----------
width : int
Bit width of the input
Attributes
----------
i : Signal(width), in
One-hot input.
o : Signal(range(width)), out
Encoded binary.
n : Signal, out
Invalid: either none or multiple input bits are asserted.
"""
def __init__(self, width):
self.width = width
self.i = Signal(width)
self.o = Signal(range(width))
self.n = Signal()
def elaborate(self, platform):
m = Module()
with m.Switch(self.i):
for j in range(self.width):
with m.Case(1 << j):
m.d.comb += self.o.eq(j)
with m.Case():
m.d.comb += self.n.eq(1)
return m
class PriorityEncoder(Elaboratable):
"""Priority encode requests to binary.
If any bit in ``i`` is asserted, ``n`` is low and ``o`` indicates the least significant
asserted bit.
Otherwise, ``n`` is high and ``o`` is ``0``.
Parameters
----------
width : int
Bit width of the input.
Attributes
----------
i : Signal(width), in
Input requests.
o : Signal(range(width)), out
Encoded binary.
n : Signal, out
Invalid: no input bits are asserted.
"""
def __init__(self, width):
self.width = width
self.i = Signal(width)
self.o = Signal(range(width))
self.n = Signal()
def elaborate(self, platform):
m = Module()
for j in reversed(range(self.width)):
with m.If(self.i[j]):
m.d.comb += self.o.eq(j)
m.d.comb += self.n.eq(self.i == 0)
return m
class Decoder(Elaboratable):
"""Decode binary to one-hot.
If ``n`` is low, only the ``i``th bit in ``o`` is asserted.
If ``n`` is high, ``o`` is ``0``.
Parameters
----------
width : int
Bit width of the output.
Attributes
----------
i : Signal(range(width)), in
Input binary.
o : Signal(width), out
Decoded one-hot.
n : Signal, in
Invalid, no output bits are to be asserted.
"""
def __init__(self, width):
self.width = width
self.i = Signal(range(width))
self.n = Signal()
self.o = Signal(width)
def elaborate(self, platform):
m = Module()
with m.Switch(self.i):
for j in range(len(self.o)):
with m.Case(j):
m.d.comb += self.o.eq(1 << j)
with m.If(self.n):
m.d.comb += self.o.eq(0)
return m
class PriorityDecoder(Decoder):
"""Decode binary to priority request.
Identical to :class:`Decoder`.
"""
class GrayEncoder(Elaboratable):
"""Encode binary to Gray code.
Parameters
----------
width : int
Bit width.
Attributes
----------
i : Signal(width), in
Input natural binary.
o : Signal(width), out
Encoded Gray code.
"""
def __init__(self, width):
self.width = width
self.i = Signal(width)
self.o = Signal(width)
def elaborate(self, platform):
m = Module()
m.d.comb += self.o.eq(self.i ^ self.i[1:])
return m
class GrayDecoder(Elaboratable):
"""Decode Gray code to binary.
Parameters
----------
width : int
Bit width.
Attributes
----------
i : Signal(width), in
Input Gray code.
o : Signal(width), out
Decoded natural binary.
"""
def __init__(self, width):
self.width = width
self.i = Signal(width)
self.o = Signal(width)
def elaborate(self, platform):
m = Module()
m.d.comb += self.o[-1].eq(self.i[-1])
for i in reversed(range(self.width - 1)):
m.d.comb += self.o[i].eq(self.o[i + 1] ^ self.i[i])
return m

529
amaranth/lib/fifo.py Normal file
View file

@ -0,0 +1,529 @@
"""First-in first-out queues."""
from .. import *
from ..asserts import *
from .._utils import log2_int
from .coding import GrayEncoder, GrayDecoder
from .cdc import FFSynchronizer, AsyncFFSynchronizer
__all__ = ["FIFOInterface", "SyncFIFO", "SyncFIFOBuffered", "AsyncFIFO", "AsyncFIFOBuffered"]
class FIFOInterface:
_doc_template = """
{description}
Parameters
----------
width : int
Bit width of data entries.
depth : int
Depth of the queue. If zero, the FIFO cannot be read from or written to.
{parameters}
Attributes
----------
{attributes}
w_data : in, width
Input data.
w_rdy : out
Asserted if there is space in the queue, i.e. ``w_en`` can be asserted to write
a new entry.
w_en : in
Write strobe. Latches ``w_data`` into the queue. Does nothing if ``w_rdy`` is not asserted.
w_level : out
Number of unread entries.
{w_attributes}
r_data : out, width
Output data. {r_data_valid}
r_rdy : out
Asserted if there is an entry in the queue, i.e. ``r_en`` can be asserted to read
an existing entry.
r_en : in
Read strobe. Makes the next entry (if any) available on ``r_data`` at the next cycle.
Does nothing if ``r_rdy`` is not asserted.
r_level : out
Number of unread entries.
{r_attributes}
"""
__doc__ = _doc_template.format(description="""
Data written to the input interface (``w_data``, ``w_rdy``, ``w_en``) is buffered and can be
read at the output interface (``r_data``, ``r_rdy``, ``r_en`). The data entry written first
to the input also appears first on the output.
""",
parameters="",
r_data_valid="The conditions in which ``r_data`` is valid depends on the type of the queue.",
attributes="""
fwft : bool
First-word fallthrough. If set, when ``r_rdy`` rises, the first entry is already
available, i.e. ``r_data`` is valid. Otherwise, after ``r_rdy`` rises, it is necessary
to strobe ``r_en`` for ``r_data`` to become valid.
""".strip(),
w_attributes="",
r_attributes="")
def __init__(self, *, width, depth, fwft):
if not isinstance(width, int) or width < 0:
raise TypeError("FIFO width must be a non-negative integer, not {!r}"
.format(width))
if not isinstance(depth, int) or depth < 0:
raise TypeError("FIFO depth must be a non-negative integer, not {!r}"
.format(depth))
self.width = width
self.depth = depth
self.fwft = fwft
self.w_data = Signal(width, reset_less=True)
self.w_rdy = Signal() # writable; not full
self.w_en = Signal()
self.w_level = Signal(range(depth + 1))
self.r_data = Signal(width, reset_less=True)
self.r_rdy = Signal() # readable; not empty
self.r_en = Signal()
self.r_level = Signal(range(depth + 1))
def _incr(signal, modulo):
if modulo == 2 ** len(signal):
return signal + 1
else:
return Mux(signal == modulo - 1, 0, signal + 1)
class SyncFIFO(Elaboratable, FIFOInterface):
__doc__ = FIFOInterface._doc_template.format(
description="""
Synchronous first in, first out queue.
Read and write interfaces are accessed from the same clock domain. If different clock domains
are needed, use :class:`AsyncFIFO`.
""".strip(),
parameters="""
fwft : bool
First-word fallthrough. If set, when the queue is empty and an entry is written into it,
that entry becomes available on the output on the same clock cycle. Otherwise, it is
necessary to assert ``r_en`` for ``r_data`` to become valid.
""".strip(),
r_data_valid="""
For FWFT queues, valid if ``r_rdy`` is asserted. For non-FWFT queues, valid on the next
cycle after ``r_rdy`` and ``r_en`` have been asserted.
""".strip(),
attributes="",
r_attributes="",
w_attributes="")
def __init__(self, *, width, depth, fwft=True):
super().__init__(width=width, depth=depth, fwft=fwft)
self.level = Signal(range(depth + 1))
def elaborate(self, platform):
m = Module()
if self.depth == 0:
m.d.comb += [
self.w_rdy.eq(0),
self.r_rdy.eq(0),
]
return m
m.d.comb += [
self.w_rdy.eq(self.level != self.depth),
self.r_rdy.eq(self.level != 0),
self.w_level.eq(self.level),
self.r_level.eq(self.level),
]
do_read = self.r_rdy & self.r_en
do_write = self.w_rdy & self.w_en
storage = Memory(width=self.width, depth=self.depth)
w_port = m.submodules.w_port = storage.write_port()
r_port = m.submodules.r_port = storage.read_port(
domain="comb" if self.fwft else "sync", transparent=self.fwft)
produce = Signal(range(self.depth))
consume = Signal(range(self.depth))
m.d.comb += [
w_port.addr.eq(produce),
w_port.data.eq(self.w_data),
w_port.en.eq(self.w_en & self.w_rdy),
]
with m.If(do_write):
m.d.sync += produce.eq(_incr(produce, self.depth))
m.d.comb += [
r_port.addr.eq(consume),
self.r_data.eq(r_port.data),
]
if not self.fwft:
m.d.comb += r_port.en.eq(self.r_en)
with m.If(do_read):
m.d.sync += consume.eq(_incr(consume, self.depth))
with m.If(do_write & ~do_read):
m.d.sync += self.level.eq(self.level + 1)
with m.If(do_read & ~do_write):
m.d.sync += self.level.eq(self.level - 1)
if platform == "formal":
# TODO: move this logic to SymbiYosys
with m.If(Initial()):
m.d.comb += [
Assume(produce < self.depth),
Assume(consume < self.depth),
]
with m.If(produce == consume):
m.d.comb += Assume((self.level == 0) | (self.level == self.depth))
with m.If(produce > consume):
m.d.comb += Assume(self.level == (produce - consume))
with m.If(produce < consume):
m.d.comb += Assume(self.level == (self.depth + produce - consume))
with m.Else():
m.d.comb += [
Assert(produce < self.depth),
Assert(consume < self.depth),
]
with m.If(produce == consume):
m.d.comb += Assert((self.level == 0) | (self.level == self.depth))
with m.If(produce > consume):
m.d.comb += Assert(self.level == (produce - consume))
with m.If(produce < consume):
m.d.comb += Assert(self.level == (self.depth + produce - consume))
return m
class SyncFIFOBuffered(Elaboratable, FIFOInterface):
__doc__ = FIFOInterface._doc_template.format(
description="""
Buffered synchronous first in, first out queue.
This queue's interface is identical to :class:`SyncFIFO` configured as ``fwft=True``, but it
does not use asynchronous memory reads, which are incompatible with FPGA block RAMs.
In exchange, the latency between an entry being written to an empty queue and that entry
becoming available on the output is increased by one cycle compared to :class:`SyncFIFO`.
""".strip(),
parameters="""
fwft : bool
Always set.
""".strip(),
attributes="",
r_data_valid="Valid if ``r_rdy`` is asserted.",
r_attributes="""
level : out
Number of unread entries.
""".strip(),
w_attributes="")
def __init__(self, *, width, depth):
super().__init__(width=width, depth=depth, fwft=True)
self.level = Signal(range(depth + 1))
def elaborate(self, platform):
m = Module()
if self.depth == 0:
m.d.comb += [
self.w_rdy.eq(0),
self.r_rdy.eq(0),
]
return m
# Effectively, this queue treats the output register of the non-FWFT inner queue as
# an additional storage element.
m.submodules.unbuffered = fifo = SyncFIFO(width=self.width, depth=self.depth - 1,
fwft=False)
m.d.comb += [
fifo.w_data.eq(self.w_data),
fifo.w_en.eq(self.w_en),
self.w_rdy.eq(fifo.w_rdy),
]
m.d.comb += [
self.r_data.eq(fifo.r_data),
fifo.r_en.eq(fifo.r_rdy & (~self.r_rdy | self.r_en)),
]
with m.If(fifo.r_en):
m.d.sync += self.r_rdy.eq(1)
with m.Elif(self.r_en):
m.d.sync += self.r_rdy.eq(0)
m.d.comb += [
self.level.eq(fifo.level + self.r_rdy),
self.w_level.eq(self.level),
self.r_level.eq(self.level),
]
return m
class AsyncFIFO(Elaboratable, FIFOInterface):
__doc__ = FIFOInterface._doc_template.format(
description="""
Asynchronous first in, first out queue.
Read and write interfaces are accessed from different clock domains, which can be set when
constructing the FIFO.
:class:`AsyncFIFO` can be reset from the write clock domain. When the write domain reset is
asserted, the FIFO becomes empty. When the read domain is reset, data remains in the FIFO - the
read domain logic should correctly handle this case.
:class:`AsyncFIFO` only supports power of 2 depths. Unless ``exact_depth`` is specified,
the ``depth`` parameter is rounded up to the next power of 2.
""".strip(),
parameters="""
r_domain : str
Read clock domain.
w_domain : str
Write clock domain.
""".strip(),
attributes="""
fwft : bool
Always set.
""".strip(),
r_data_valid="Valid if ``r_rdy`` is asserted.",
r_attributes="""
r_rst : Signal, out
Asserted while the FIFO is being reset by the write-domain reset (for at least one
read-domain clock cycle).
""".strip(),
w_attributes="")
def __init__(self, *, width, depth, r_domain="read", w_domain="write", exact_depth=False):
if depth != 0:
try:
depth_bits = log2_int(depth, need_pow2=exact_depth)
depth = 1 << depth_bits
except ValueError:
raise ValueError("AsyncFIFO only supports depths that are powers of 2; requested "
"exact depth {} is not"
.format(depth)) from None
else:
depth_bits = 0
super().__init__(width=width, depth=depth, fwft=True)
self.r_rst = Signal()
self._r_domain = r_domain
self._w_domain = w_domain
self._ctr_bits = depth_bits + 1
def elaborate(self, platform):
m = Module()
if self.depth == 0:
m.d.comb += [
self.w_rdy.eq(0),
self.r_rdy.eq(0),
]
return m
# The design of this queue is the "style #2" from Clifford E. Cummings' paper "Simulation
# and Synthesis Techniques for Asynchronous FIFO Design":
# http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO1.pdf
do_write = self.w_rdy & self.w_en
do_read = self.r_rdy & self.r_en
# TODO: extract this pattern into lib.cdc.GrayCounter
produce_w_bin = Signal(self._ctr_bits)
produce_w_nxt = Signal(self._ctr_bits)
m.d.comb += produce_w_nxt.eq(produce_w_bin + do_write)
m.d[self._w_domain] += produce_w_bin.eq(produce_w_nxt)
# Note: Both read-domain counters must be reset_less (see comments below)
consume_r_bin = Signal(self._ctr_bits, reset_less=True)
consume_r_nxt = Signal(self._ctr_bits)
m.d.comb += consume_r_nxt.eq(consume_r_bin + do_read)
m.d[self._r_domain] += consume_r_bin.eq(consume_r_nxt)
produce_w_gry = Signal(self._ctr_bits)
produce_r_gry = Signal(self._ctr_bits)
produce_enc = m.submodules.produce_enc = \
GrayEncoder(self._ctr_bits)
produce_cdc = m.submodules.produce_cdc = \
FFSynchronizer(produce_w_gry, produce_r_gry, o_domain=self._r_domain)
m.d.comb += produce_enc.i.eq(produce_w_nxt),
m.d[self._w_domain] += produce_w_gry.eq(produce_enc.o)
consume_r_gry = Signal(self._ctr_bits, reset_less=True)
consume_w_gry = Signal(self._ctr_bits)
consume_enc = m.submodules.consume_enc = \
GrayEncoder(self._ctr_bits)
consume_cdc = m.submodules.consume_cdc = \
FFSynchronizer(consume_r_gry, consume_w_gry, o_domain=self._w_domain)
m.d.comb += consume_enc.i.eq(consume_r_nxt)
m.d[self._r_domain] += consume_r_gry.eq(consume_enc.o)
consume_w_bin = Signal(self._ctr_bits)
consume_dec = m.submodules.consume_dec = \
GrayDecoder(self._ctr_bits)
m.d.comb += consume_dec.i.eq(consume_w_gry),
m.d[self._w_domain] += consume_w_bin.eq(consume_dec.o)
produce_r_bin = Signal(self._ctr_bits)
produce_dec = m.submodules.produce_dec = \
GrayDecoder(self._ctr_bits)
m.d.comb += produce_dec.i.eq(produce_r_gry),
m.d.comb += produce_r_bin.eq(produce_dec.o)
w_full = Signal()
r_empty = Signal()
m.d.comb += [
w_full.eq((produce_w_gry[-1] != consume_w_gry[-1]) &
(produce_w_gry[-2] != consume_w_gry[-2]) &
(produce_w_gry[:-2] == consume_w_gry[:-2])),
r_empty.eq(consume_r_gry == produce_r_gry),
]
m.d[self._w_domain] += self.w_level.eq((produce_w_bin - consume_w_bin))
m.d.comb += self.r_level.eq((produce_r_bin - consume_r_bin))
storage = Memory(width=self.width, depth=self.depth)
w_port = m.submodules.w_port = storage.write_port(domain=self._w_domain)
r_port = m.submodules.r_port = storage.read_port (domain=self._r_domain,
transparent=False)
m.d.comb += [
w_port.addr.eq(produce_w_bin[:-1]),
w_port.data.eq(self.w_data),
w_port.en.eq(do_write),
self.w_rdy.eq(~w_full),
]
m.d.comb += [
r_port.addr.eq(consume_r_nxt[:-1]),
self.r_data.eq(r_port.data),
r_port.en.eq(1),
self.r_rdy.eq(~r_empty),
]
# Reset handling to maintain FIFO and CDC invariants in the presence of a write-domain
# reset.
# There is a CDC hazard associated with resetting an async FIFO - Gray code counters which
# are reset to 0 violate their Gray code invariant. One way to handle this is to ensure
# that both sides of the FIFO are asynchronously reset by the same signal. We adopt a
# slight variation on this approach - reset control rests entirely with the write domain.
# The write domain's reset signal is used to asynchronously reset the read domain's
# counters and force the FIFO to be empty when the write domain's reset is asserted.
# This requires the two read domain counters to be marked as "reset_less", as they are
# reset through another mechanism. See https://github.com/amaranth-lang/amaranth/issues/181
# for the full discussion.
w_rst = ResetSignal(domain=self._w_domain, allow_reset_less=True)
r_rst = Signal()
# Async-set-sync-release synchronizer avoids CDC hazards
rst_cdc = m.submodules.rst_cdc = \
AsyncFFSynchronizer(w_rst, r_rst, o_domain=self._r_domain)
# Decode Gray code counter synchronized from write domain to overwrite binary
# counter in read domain.
rst_dec = m.submodules.rst_dec = \
GrayDecoder(self._ctr_bits)
m.d.comb += rst_dec.i.eq(produce_r_gry)
with m.If(r_rst):
m.d.comb += r_empty.eq(1)
m.d[self._r_domain] += consume_r_gry.eq(produce_r_gry)
m.d[self._r_domain] += consume_r_bin.eq(rst_dec.o)
m.d[self._r_domain] += self.r_rst.eq(1)
with m.Else():
m.d[self._r_domain] += self.r_rst.eq(0)
if platform == "formal":
with m.If(Initial()):
m.d.comb += Assume(produce_w_gry == (produce_w_bin ^ produce_w_bin[1:]))
m.d.comb += Assume(consume_r_gry == (consume_r_bin ^ consume_r_bin[1:]))
return m
class AsyncFIFOBuffered(Elaboratable, FIFOInterface):
__doc__ = FIFOInterface._doc_template.format(
description="""
Buffered asynchronous first in, first out queue.
Read and write interfaces are accessed from different clock domains, which can be set when
constructing the FIFO.
:class:`AsyncFIFOBuffered` only supports power of 2 plus one depths. Unless ``exact_depth``
is specified, the ``depth`` parameter is rounded up to the next power of 2 plus one.
(The output buffer acts as an additional queue element.)
This queue's interface is identical to :class:`AsyncFIFO`, but it has an additional register
on the output, improving timing in case of block RAM that has large clock-to-output delay.
In exchange, the latency between an entry being written to an empty queue and that entry
becoming available on the output is increased by one cycle compared to :class:`AsyncFIFO`.
""".strip(),
parameters="""
r_domain : str
Read clock domain.
w_domain : str
Write clock domain.
""".strip(),
attributes="""
fwft : bool
Always set.
""".strip(),
r_data_valid="Valid if ``r_rdy`` is asserted.",
r_attributes="""
r_rst : Signal, out
Asserted while the FIFO is being reset by the write-domain reset (for at least one
read-domain clock cycle).
""".strip(),
w_attributes="")
def __init__(self, *, width, depth, r_domain="read", w_domain="write", exact_depth=False):
if depth != 0:
try:
depth_bits = log2_int(max(0, depth - 1), need_pow2=exact_depth)
depth = (1 << depth_bits) + 1
except ValueError:
raise ValueError("AsyncFIFOBuffered only supports depths that are one higher "
"than powers of 2; requested exact depth {} is not"
.format(depth)) from None
super().__init__(width=width, depth=depth, fwft=True)
self.r_rst = Signal()
self._r_domain = r_domain
self._w_domain = w_domain
def elaborate(self, platform):
m = Module()
if self.depth == 0:
m.d.comb += [
self.w_rdy.eq(0),
self.r_rdy.eq(0),
]
return m
m.submodules.unbuffered = fifo = AsyncFIFO(width=self.width, depth=self.depth - 1,
r_domain=self._r_domain, w_domain=self._w_domain)
m.d.comb += [
fifo.w_data.eq(self.w_data),
self.w_rdy.eq(fifo.w_rdy),
fifo.w_en.eq(self.w_en),
]
r_consume_buffered = Signal()
m.d.comb += r_consume_buffered.eq((self.r_rdy - self.r_en) & self.r_rdy)
m.d[self._r_domain] += self.r_level.eq(fifo.r_level + r_consume_buffered)
w_consume_buffered = Signal()
m.submodules.consume_buffered_cdc = FFSynchronizer(r_consume_buffered, w_consume_buffered, o_domain=self._w_domain, stages=4)
m.d.comb += self.w_level.eq(fifo.w_level + w_consume_buffered)
with m.If(self.r_en | ~self.r_rdy):
m.d[self._r_domain] += [
self.r_data.eq(fifo.r_data),
self.r_rdy.eq(fifo.r_rdy),
self.r_rst.eq(fifo.r_rst),
]
m.d.comb += [
fifo.r_en.eq(1)
]
return m

116
amaranth/lib/io.py Normal file
View file

@ -0,0 +1,116 @@
from .. import *
from ..hdl.rec import *
__all__ = ["pin_layout", "Pin"]
def pin_layout(width, dir, xdr=0):
"""
Layout of the platform interface of a pin or several pins, which may be used inside
user-defined records.
See :class:`Pin` for details.
"""
if not isinstance(width, int) or width < 1:
raise TypeError("Width must be a positive integer, not {!r}"
.format(width))
if dir not in ("i", "o", "oe", "io"):
raise TypeError("Direction must be one of \"i\", \"o\", \"io\", or \"oe\", not {!r}"""
.format(dir))
if not isinstance(xdr, int) or xdr < 0:
raise TypeError("Gearing ratio must be a non-negative integer, not {!r}"
.format(xdr))
fields = []
if dir in ("i", "io"):
if xdr > 0:
fields.append(("i_clk", 1))
if xdr > 2:
fields.append(("i_fclk", 1))
if xdr in (0, 1):
fields.append(("i", width))
else:
for n in range(xdr):
fields.append(("i{}".format(n), width))
if dir in ("o", "oe", "io"):
if xdr > 0:
fields.append(("o_clk", 1))
if xdr > 2:
fields.append(("o_fclk", 1))
if xdr in (0, 1):
fields.append(("o", width))
else:
for n in range(xdr):
fields.append(("o{}".format(n), width))
if dir in ("oe", "io"):
fields.append(("oe", 1))
return Layout(fields)
class Pin(Record):
"""
An interface to an I/O buffer or a group of them that provides uniform access to input, output,
or tristate buffers that may include a 1:n gearbox. (A 1:2 gearbox is typically called "DDR".)
A :class:`Pin` is identical to a :class:`Record` that uses the corresponding :meth:`pin_layout`
except that it allos accessing the parameters like ``width`` as attributes. It is legal to use
a plain :class:`Record` anywhere a :class:`Pin` is used, provided that these attributes are
not necessary.
Parameters
----------
width : int
Width of the ``i``/``iN`` and ``o``/``oN`` signals.
dir : ``"i"``, ``"o"``, ``"io"``, ``"oe"``
Direction of the buffers. If ``"i"`` is specified, only the ``i``/``iN`` signals are
present. If ``"o"`` is specified, only the ``o``/``oN`` signals are present. If ``"oe"`` is
specified, the ``o``/``oN`` signals are present, and an ``oe`` signal is present.
If ``"io"`` is specified, both the ``i``/``iN`` and ``o``/``oN`` signals are present, and
an ``oe`` signal is present.
xdr : int
Gearbox ratio. If equal to 0, the I/O buffer is combinatorial, and only ``i``/``o``
signals are present. If equal to 1, the I/O buffer is SDR, and only ``i``/``o`` signals are
present. If greater than 1, the I/O buffer includes a gearbox, and ``iN``/``oN`` signals
are present instead, where ``N in range(0, N)``. For example, if ``xdr=2``, the I/O buffer
is DDR; the signal ``i0`` reflects the value at the rising edge, and the signal ``i1``
reflects the value at the falling edge.
name : str
Name of the underlying record.
Attributes
----------
i_clk:
I/O buffer input clock. Synchronizes `i*`. Present if ``xdr`` is nonzero.
i_fclk:
I/O buffer input fast clock. Synchronizes `i*` on higer gearbox ratios. Present if ``xdr``
is greater than 2.
i : Signal, out
I/O buffer input, without gearing. Present if ``dir="i"`` or ``dir="io"``, and ``xdr`` is
equal to 0 or 1.
i0, i1, ... : Signal, out
I/O buffer inputs, with gearing. Present if ``dir="i"`` or ``dir="io"``, and ``xdr`` is
greater than 1.
o_clk:
I/O buffer output clock. Synchronizes `o*`, including `oe`. Present if ``xdr`` is nonzero.
o_fclk:
I/O buffer output fast clock. Synchronizes `o*` on higher gearbox ratios. Present if
``xdr`` is greater than 2.
o : Signal, in
I/O buffer output, without gearing. Present if ``dir="o"`` or ``dir="io"``, and ``xdr`` is
equal to 0 or 1.
o0, o1, ... : Signal, in
I/O buffer outputs, with gearing. Present if ``dir="o"`` or ``dir="io"``, and ``xdr`` is
greater than 1.
oe : Signal, in
I/O buffer output enable. Present if ``dir="io"`` or ``dir="oe"``. Buffers generally
cannot change direction more than once per cycle, so at most one output enable signal
is present.
"""
def __init__(self, width, dir, *, xdr=0, name=None, src_loc_at=0):
self.width = width
self.dir = dir
self.xdr = xdr
super().__init__(pin_layout(self.width, self.dir, self.xdr),
name=name, src_loc_at=src_loc_at + 1)

60
amaranth/lib/scheduler.py Normal file
View file

@ -0,0 +1,60 @@
from .. import *
__all__ = ["RoundRobin"]
class RoundRobin(Elaboratable):
"""Round-robin scheduler.
For a given set of requests, the round-robin scheduler will
grant one request. Once it grants a request, if any other
requests are active, it grants the next active request with
a greater number, restarting from zero once it reaches the
highest one.
Use :class:`EnableInserter` to control when the scheduler
is updated.
Parameters
----------
count : int
Number of requests.
Attributes
----------
requests : Signal(count), in
Set of requests.
grant : Signal(range(count)), out
Number of the granted request. Does not change if there are no
active requests.
valid : Signal(), out
Asserted if grant corresponds to an active request. Deasserted
otherwise, i.e. if no requests are active.
"""
def __init__(self, *, count):
if not isinstance(count, int) or count < 0:
raise ValueError("Count must be a non-negative integer, not {!r}"
.format(count))
self.count = count
self.requests = Signal(count)
self.grant = Signal(range(count))
self.valid = Signal()
def elaborate(self, platform):
m = Module()
with m.Switch(self.grant):
for i in range(self.count):
with m.Case(i):
for pred in reversed(range(i)):
with m.If(self.requests[pred]):
m.d.sync += self.grant.eq(pred)
for succ in reversed(range(i + 1, self.count)):
with m.If(self.requests[succ]):
m.d.sync += self.grant.eq(succ)
m.d.sync += self.valid.eq(self.requests.any())
return m

111
amaranth/rpc.py Normal file
View file

@ -0,0 +1,111 @@
import sys
import json
import argparse
import importlib
from .hdl import Signal, Record, Elaboratable
from .back import rtlil
__all__ = ["main"]
def _collect_modules(names):
modules = {}
for name in names:
py_module_name, py_class_name = name.rsplit(".", 1)
py_module = importlib.import_module(py_module_name)
if py_class_name == "*":
for py_class_name in py_module.__all__:
py_class = py_module.__dict__[py_class_name]
if not issubclass(py_class, Elaboratable):
continue
modules["{}.{}".format(py_module_name, py_class_name)] = py_class
else:
py_class = py_module.__dict__[py_class_name]
if not isinstance(py_class, type) or not issubclass(py_class, Elaboratable):
raise TypeError("{}.{} is not a class inheriting from Elaboratable"
.format(py_module_name, py_class_name))
modules[name] = py_class
return modules
def _serve_yosys(modules):
while True:
request_json = sys.stdin.readline()
if not request_json: break
request = json.loads(request_json)
if request["method"] == "modules":
response = {"modules": list(modules.keys())}
elif request["method"] == "derive":
module_name = request["module"]
args, kwargs = [], {}
for parameter_name, parameter in request["parameters"].items():
if parameter["type"] == "unsigned":
parameter_value = int(parameter["value"], 2)
elif parameter["type"] == "signed":
width = len(parameter["value"])
parameter_value = int(parameter["value"], 2)
if parameter_value & (1 << (width - 1)):
parameter_value = -((1 << width) - parameter_value)
elif parameter["type"] == "string":
parameter_value = parameter["value"]
elif parameter["type"] == "real":
parameter_value = float(parameter["value"])
else:
raise NotImplementedError("Unrecognized parameter type {}"
.format(parameter_name))
if parameter_name.startswith("$"):
index = int(parameter_name[1:])
while len(args) < index:
args.append(None)
args[index] = parameter_value
if parameter_name.startswith("\\"):
kwargs[parameter_name[1:]] = parameter_value
try:
elaboratable = modules[module_name](*args, **kwargs)
ports = []
# By convention, any public attribute that is a Signal or a Record is
# considered a port.
for port_name, port in vars(elaboratable).items():
if not port_name.startswith("_") and isinstance(port, (Signal, Record)):
ports += port._lhs_signals()
rtlil_text = rtlil.convert(elaboratable, name=module_name, ports=ports)
response = {"frontend": "ilang", "source": rtlil_text}
except Exception as error:
response = {"error": "{}: {}".format(type(error).__name__, str(error))}
else:
return {"error": "Unrecognized method {!r}".format(request["method"])}
sys.stdout.write(json.dumps(response))
sys.stdout.write("\n")
sys.stdout.flush()
def main():
parser = argparse.ArgumentParser(description=r"""
The Amaranth RPC server allows a HDL synthesis program to request an Amaranth module to
be elaborated on demand using the parameters it provides. For example, using Yosys together
with the Amaranth RPC server allows instantiating parametric Amaranth modules directly
from Verilog.
""")
def add_modules_arg(parser):
parser.add_argument("modules", metavar="MODULE", type=str, nargs="+",
help="import and provide MODULES")
protocols = parser.add_subparsers(metavar="PROTOCOL", dest="protocol", required=True)
protocol_yosys = protocols.add_parser("yosys", help="use Yosys JSON-based RPC protocol")
add_modules_arg(protocol_yosys)
args = parser.parse_args()
modules = _collect_modules(args.modules)
if args.protocol == "yosys":
_serve_yosys(modules)
if __name__ == "__main__":
main()

4
amaranth/sim/__init__.py Normal file
View file

@ -0,0 +1,4 @@
from .core import *
__all__ = ["Settle", "Delay", "Tick", "Passive", "Active", "Simulator"]

View file

@ -430,8 +430,8 @@ class _FragmentCompiler:
# (almost certainly due to a bug in the code generator), use this environment variable # (almost certainly due to a bug in the code generator), use this environment variable
# to make backtraces useful. # to make backtraces useful.
code = emitter.flush() code = emitter.flush()
if os.getenv("NMIGEN_pysim_dump"): if os.getenv("AMARANTH_pysim_dump"):
file = tempfile.NamedTemporaryFile("w", prefix="nmigen_pysim_", delete=False) file = tempfile.NamedTemporaryFile("w", prefix="amaranth_pysim_", delete=False)
file.write(code) file.write(code)
filename = file.name filename = file.name
else: else:

206
amaranth/sim/core.py Normal file
View file

@ -0,0 +1,206 @@
import inspect
from .._utils import deprecated
from ..hdl.cd import *
from ..hdl.ir import *
from ._base import BaseEngine
__all__ = ["Settle", "Delay", "Tick", "Passive", "Active", "Simulator"]
class Command:
pass
class Settle(Command):
def __repr__(self):
return "(settle)"
class Delay(Command):
def __init__(self, interval=None):
self.interval = None if interval is None else float(interval)
def __repr__(self):
if self.interval is None:
return "(delay ε)"
else:
return "(delay {:.3}us)".format(self.interval * 1e6)
class Tick(Command):
def __init__(self, domain="sync"):
if not isinstance(domain, (str, ClockDomain)):
raise TypeError("Domain must be a string or a ClockDomain instance, not {!r}"
.format(domain))
assert domain != "comb"
self.domain = domain
def __repr__(self):
return "(tick {})".format(self.domain)
class Passive(Command):
def __repr__(self):
return "(passive)"
class Active(Command):
def __repr__(self):
return "(active)"
class Simulator:
def __init__(self, fragment, *, engine="pysim"):
if isinstance(engine, type) and issubclass(engine, BaseEngine):
pass
elif engine == "pysim":
from .pysim import PySimEngine
engine = PySimEngine
else:
raise TypeError("Value '{!r}' is not a simulation engine class or "
"a simulation engine name"
.format(engine))
self._fragment = Fragment.get(fragment, platform=None).prepare()
self._engine = engine(self._fragment)
self._clocked = set()
def _check_process(self, process):
if not (inspect.isgeneratorfunction(process) or inspect.iscoroutinefunction(process)):
raise TypeError("Cannot add a process {!r} because it is not a generator function"
.format(process))
return process
def add_process(self, process):
process = self._check_process(process)
def wrapper():
# Only start a bench process after comb settling, so that the reset values are correct.
yield Settle()
yield from process()
self._engine.add_coroutine_process(wrapper, default_cmd=None)
def add_sync_process(self, process, *, domain="sync"):
process = self._check_process(process)
def wrapper():
# Only start a sync process after the first clock edge (or reset edge, if the domain
# uses an asynchronous reset). This matches the behavior of synchronous FFs.
yield Tick(domain)
yield from process()
self._engine.add_coroutine_process(wrapper, default_cmd=Tick(domain))
def add_clock(self, period, *, phase=None, domain="sync", if_exists=False):
"""Add a clock process.
Adds a process that drives the clock signal of ``domain`` at a 50% duty cycle.
Arguments
---------
period : float
Clock period. The process will toggle the ``domain`` clock signal every ``period / 2``
seconds.
phase : None or float
Clock phase. The process will wait ``phase`` seconds before the first clock transition.
If not specified, defaults to ``period / 2``.
domain : str or ClockDomain
Driven clock domain. If specified as a string, the domain with that name is looked up
in the root fragment of the simulation.
if_exists : bool
If ``False`` (the default), raise an error if the driven domain is specified as
a string and the root fragment does not have such a domain. If ``True``, do nothing
in this case.
"""
if isinstance(domain, ClockDomain):
pass
elif domain in self._fragment.domains:
domain = self._fragment.domains[domain]
elif if_exists:
return
else:
raise ValueError("Domain {!r} is not present in simulation"
.format(domain))
if domain in self._clocked:
raise ValueError("Domain {!r} already has a clock driving it"
.format(domain.name))
if phase is None:
# By default, delay the first edge by half period. This causes any synchronous activity
# to happen at a non-zero time, distinguishing it from the reset values in the waveform
# viewer.
phase = period / 2
self._engine.add_clock_process(domain.clk, phase=phase, period=period)
self._clocked.add(domain)
def reset(self):
"""Reset the simulation.
Assign the reset value to every signal in the simulation, and restart every user process.
"""
self._engine.reset()
# TODO(amaranth-0.4): replace with _real_step
@deprecated("instead of `sim.step()`, use `sim.advance()`")
def step(self):
return self.advance()
def advance(self):
"""Advance the simulation.
Run every process and commit changes until a fixed point is reached, then advance time
to the closest deadline (if any). If there is an unstable combinatorial loop,
this function will never return.
Returns ``True`` if there are any active processes, ``False`` otherwise.
"""
return self._engine.advance()
def run(self):
"""Run the simulation while any processes are active.
Processes added with :meth:`add_process` and :meth:`add_sync_process` are initially active,
and may change their status using the ``yield Passive()`` and ``yield Active()`` commands.
Processes compiled from HDL and added with :meth:`add_clock` are always passive.
"""
while self.advance():
pass
def run_until(self, deadline, *, run_passive=False):
"""Run the simulation until it advances to ``deadline``.
If ``run_passive`` is ``False``, the simulation also stops when there are no active
processes, similar to :meth:`run`. Otherwise, the simulation will stop only after it
advances to or past ``deadline``.
If the simulation stops advancing, this function will never return.
"""
assert self._engine.now <= deadline
while (self.advance() or run_passive) and self._engine.now < deadline:
pass
def write_vcd(self, vcd_file, gtkw_file=None, *, traces=()):
"""Write waveforms to a Value Change Dump file, optionally populating a GTKWave save file.
This method returns a context manager. It can be used as: ::
sim = Simulator(frag)
sim.add_clock(1e-6)
with sim.write_vcd("dump.vcd", "dump.gtkw"):
sim.run_until(1e-3)
Arguments
---------
vcd_file : str or file-like object
Verilog Value Change Dump file or filename.
gtkw_file : str or file-like object
GTKWave save file or filename.
traces : iterable of Signal
Signals to display traces for.
"""
if self._engine.now != 0.0:
for file in (vcd_file, gtkw_file):
if hasattr(file, "close"):
file.close()
raise ValueError("Cannot start writing waveforms after advancing simulation time")
return self._engine.write_vcd(vcd_file=vcd_file, gtkw_file=gtkw_file, traces=traces)

336
amaranth/sim/pysim.py Normal file
View file

@ -0,0 +1,336 @@
from contextlib import contextmanager
import itertools
from vcd import VCDWriter
from vcd.gtkw import GTKWSave
from ..hdl import *
from ..hdl.ast import SignalDict
from ._base import *
from ._pyrtl import _FragmentCompiler
from ._pycoro import PyCoroProcess
from ._pyclock import PyClockProcess
__all__ = ["PySimEngine"]
class _NameExtractor:
def __init__(self):
self.names = SignalDict()
def __call__(self, fragment, *, hierarchy=("top",)):
def add_signal_name(signal):
hierarchical_signal_name = (*hierarchy, signal.name)
if signal not in self.names:
self.names[signal] = {hierarchical_signal_name}
else:
self.names[signal].add(hierarchical_signal_name)
for domain_name, domain_signals in fragment.drivers.items():
if domain_name is not None:
domain = fragment.domains[domain_name]
add_signal_name(domain.clk)
if domain.rst is not None:
add_signal_name(domain.rst)
for statement in fragment.statements:
for signal in statement._lhs_signals() | statement._rhs_signals():
if not isinstance(signal, (ClockSignal, ResetSignal)):
add_signal_name(signal)
for subfragment_index, (subfragment, subfragment_name) in enumerate(fragment.subfragments):
if subfragment_name is None:
subfragment_name = "U${}".format(subfragment_index)
self(subfragment, hierarchy=(*hierarchy, subfragment_name))
return self.names
class _VCDWriter:
@staticmethod
def timestamp_to_vcd(timestamp):
return timestamp * (10 ** 10) # 1/(100 ps)
@staticmethod
def decode_to_vcd(signal, value):
return signal.decoder(value).expandtabs().replace(" ", "_")
def __init__(self, fragment, *, vcd_file, gtkw_file=None, traces=()):
if isinstance(vcd_file, str):
vcd_file = open(vcd_file, "wt")
if isinstance(gtkw_file, str):
gtkw_file = open(gtkw_file, "wt")
self.vcd_vars = SignalDict()
self.vcd_file = vcd_file
self.vcd_writer = vcd_file and VCDWriter(self.vcd_file,
timescale="100 ps", comment="Generated by Amaranth")
self.gtkw_names = SignalDict()
self.gtkw_file = gtkw_file
self.gtkw_save = gtkw_file and GTKWSave(self.gtkw_file)
self.traces = []
signal_names = _NameExtractor()(fragment)
trace_names = SignalDict()
for trace in traces:
if trace not in signal_names:
trace_names[trace] = {("top", trace.name)}
self.traces.append(trace)
if self.vcd_writer is None:
return
for signal, names in itertools.chain(signal_names.items(), trace_names.items()):
if signal.decoder:
var_type = "string"
var_size = 1
var_init = self.decode_to_vcd(signal, signal.reset)
else:
var_type = "wire"
var_size = signal.width
var_init = signal.reset
for (*var_scope, var_name) in names:
suffix = None
while True:
try:
if suffix is None:
var_name_suffix = var_name
else:
var_name_suffix = "{}${}".format(var_name, suffix)
if signal not in self.vcd_vars:
vcd_var = self.vcd_writer.register_var(
scope=var_scope, name=var_name_suffix,
var_type=var_type, size=var_size, init=var_init)
self.vcd_vars[signal] = vcd_var
else:
self.vcd_writer.register_alias(
scope=var_scope, name=var_name_suffix,
var=self.vcd_vars[signal])
break
except KeyError:
suffix = (suffix or 0) + 1
if signal not in self.gtkw_names:
self.gtkw_names[signal] = (*var_scope, var_name_suffix)
def update(self, timestamp, signal, value):
vcd_var = self.vcd_vars.get(signal)
if vcd_var is None:
return
vcd_timestamp = self.timestamp_to_vcd(timestamp)
if signal.decoder:
var_value = self.decode_to_vcd(signal, value)
else:
var_value = value
self.vcd_writer.change(vcd_var, vcd_timestamp, var_value)
def close(self, timestamp):
if self.vcd_writer is not None:
self.vcd_writer.close(self.timestamp_to_vcd(timestamp))
if self.gtkw_save is not None:
self.gtkw_save.dumpfile(self.vcd_file.name)
self.gtkw_save.dumpfile_size(self.vcd_file.tell())
self.gtkw_save.treeopen("top")
for signal in self.traces:
if len(signal) > 1 and not signal.decoder:
suffix = "[{}:0]".format(len(signal) - 1)
else:
suffix = ""
self.gtkw_save.trace(".".join(self.gtkw_names[signal]) + suffix)
if self.vcd_file is not None:
self.vcd_file.close()
if self.gtkw_file is not None:
self.gtkw_file.close()
class _Timeline:
def __init__(self):
self.now = 0.0
self.deadlines = dict()
def reset(self):
self.now = 0.0
self.deadlines.clear()
def at(self, run_at, process):
assert process not in self.deadlines
self.deadlines[process] = run_at
def delay(self, delay_by, process):
if delay_by is None:
run_at = self.now
else:
run_at = self.now + delay_by
self.at(run_at, process)
def advance(self):
nearest_processes = set()
nearest_deadline = None
for process, deadline in self.deadlines.items():
if deadline is None:
if nearest_deadline is not None:
nearest_processes.clear()
nearest_processes.add(process)
nearest_deadline = self.now
break
elif nearest_deadline is None or deadline <= nearest_deadline:
assert deadline >= self.now
if nearest_deadline is not None and deadline < nearest_deadline:
nearest_processes.clear()
nearest_processes.add(process)
nearest_deadline = deadline
if not nearest_processes:
return False
for process in nearest_processes:
process.runnable = True
del self.deadlines[process]
self.now = nearest_deadline
return True
class _PySignalState(BaseSignalState):
__slots__ = ("signal", "curr", "next", "waiters", "pending")
def __init__(self, signal, pending):
self.signal = signal
self.pending = pending
self.waiters = dict()
self.curr = self.next = signal.reset
def set(self, value):
if self.next == value:
return
self.next = value
self.pending.add(self)
def commit(self):
if self.curr == self.next:
return False
self.curr = self.next
awoken_any = False
for process, trigger in self.waiters.items():
if trigger is None or trigger == self.curr:
process.runnable = awoken_any = True
return awoken_any
class _PySimulation(BaseSimulation):
def __init__(self):
self.timeline = _Timeline()
self.signals = SignalDict()
self.slots = []
self.pending = set()
def reset(self):
self.timeline.reset()
for signal, index in self.signals.items():
self.slots[index].curr = self.slots[index].next = signal.reset
self.pending.clear()
def get_signal(self, signal):
try:
return self.signals[signal]
except KeyError:
index = len(self.slots)
self.slots.append(_PySignalState(signal, self.pending))
self.signals[signal] = index
return index
def add_trigger(self, process, signal, *, trigger=None):
index = self.get_signal(signal)
assert (process not in self.slots[index].waiters or
self.slots[index].waiters[process] == trigger)
self.slots[index].waiters[process] = trigger
def remove_trigger(self, process, signal):
index = self.get_signal(signal)
assert process in self.slots[index].waiters
del self.slots[index].waiters[process]
def wait_interval(self, process, interval):
self.timeline.delay(interval, process)
def commit(self, changed=None):
converged = True
for signal_state in self.pending:
if signal_state.commit():
converged = False
if changed is not None:
changed.update(self.pending)
self.pending.clear()
return converged
class PySimEngine(BaseEngine):
def __init__(self, fragment):
self._state = _PySimulation()
self._timeline = self._state.timeline
self._fragment = fragment
self._processes = _FragmentCompiler(self._state)(self._fragment)
self._vcd_writers = []
def add_coroutine_process(self, process, *, default_cmd):
self._processes.add(PyCoroProcess(self._state, self._fragment.domains, process,
default_cmd=default_cmd))
def add_clock_process(self, clock, *, phase, period):
self._processes.add(PyClockProcess(self._state, clock,
phase=phase, period=period))
def reset(self):
self._state.reset()
for process in self._processes:
process.reset()
def _step(self):
changed = set() if self._vcd_writers else None
# Performs the two phases of a delta cycle in a loop:
converged = False
while not converged:
# 1. eval: run and suspend every non-waiting process once, queueing signal changes
for process in self._processes:
if process.runnable:
process.runnable = False
process.run()
# 2. commit: apply every queued signal change, waking up any waiting processes
converged = self._state.commit(changed)
for vcd_writer in self._vcd_writers:
for signal_state in changed:
vcd_writer.update(self._timeline.now,
signal_state.signal, signal_state.curr)
def advance(self):
self._step()
self._timeline.advance()
return any(not process.passive for process in self._processes)
@property
def now(self):
return self._timeline.now
@contextmanager
def write_vcd(self, *, vcd_file, gtkw_file, traces):
vcd_writer = _VCDWriter(self._fragment,
vcd_file=vcd_file, gtkw_file=gtkw_file, traces=traces)
try:
self._vcd_writers.append(vcd_writer)
yield
finally:
vcd_writer.close(self._timeline.now)
self._vcd_writers.remove(vcd_writer)

View file

@ -0,0 +1 @@
# TODO(amaranth-0.4): remove the entire package

84
amaranth/test/utils.py Normal file
View file

@ -0,0 +1,84 @@
import os
import re
import shutil
import subprocess
import textwrap
import traceback
import unittest
import warnings
from ..hdl.ast import *
from ..hdl.ir import *
from ..back import rtlil
from .._toolchain import require_tool
warnings.warn("amaranth.test.utils is an internal utility module that has several design flaws "
"and was never intended as a public API; it will be removed in amaranth 0.4. "
"if you are using FHDLTestCase, include its implementation in your codebase. "
"see also amaranth-lang/amaranth#487",
DeprecationWarning, stacklevel=2)
__all__ = ["FHDLTestCase"]
class FHDLTestCase(unittest.TestCase):
def assertRepr(self, obj, repr_str):
if isinstance(obj, list):
obj = Statement.cast(obj)
def prepare_repr(repr_str):
repr_str = re.sub(r"\s+", " ", repr_str)
repr_str = re.sub(r"\( (?=\()", "(", repr_str)
repr_str = re.sub(r"\) (?=\))", ")", repr_str)
return repr_str.strip()
self.assertEqual(prepare_repr(repr(obj)), prepare_repr(repr_str))
def assertFormal(self, spec, mode="bmc", depth=1):
caller, *_ = traceback.extract_stack(limit=2)
spec_root, _ = os.path.splitext(caller.filename)
spec_dir = os.path.dirname(spec_root)
spec_name = "{}_{}".format(
os.path.basename(spec_root).replace("test_", "spec_"),
caller.name.replace("test_", "")
)
# The sby -f switch seems not fully functional when sby is reading from stdin.
if os.path.exists(os.path.join(spec_dir, spec_name)):
shutil.rmtree(os.path.join(spec_dir, spec_name))
if mode == "hybrid":
# A mix of BMC and k-induction, as per personal communication with Claire Wolf.
script = "setattr -unset init w:* a:amaranth.sample_reg %d"
mode = "bmc"
else:
script = ""
config = textwrap.dedent("""\
[options]
mode {mode}
depth {depth}
wait on
[engines]
smtbmc
[script]
read_ilang top.il
prep
{script}
[file top.il]
{rtlil}
""").format(
mode=mode,
depth=depth,
script=script,
rtlil=rtlil.convert(Fragment.get(spec, platform="formal"))
)
with subprocess.Popen([require_tool("sby"), "-f", "-d", spec_name], cwd=spec_dir,
universal_newlines=True,
stdin=subprocess.PIPE, stdout=subprocess.PIPE) as proc:
stdout, stderr = proc.communicate(config)
if proc.returncode != 0:
self.fail("Formal verification failed:\n" + stdout)

55
amaranth/tracer.py Normal file
View file

@ -0,0 +1,55 @@
import sys
from opcode import opname
__all__ = ["NameNotFound", "get_var_name", "get_src_loc"]
class NameNotFound(Exception):
pass
_raise_exception = object()
def get_var_name(depth=2, default=_raise_exception):
frame = sys._getframe(depth)
code = frame.f_code
call_index = frame.f_lasti
while True:
call_opc = opname[code.co_code[call_index]]
if call_opc in ("EXTENDED_ARG",):
call_index += 2
else:
break
if call_opc not in ("CALL_FUNCTION", "CALL_FUNCTION_KW", "CALL_FUNCTION_EX", "CALL_METHOD"):
return None
index = call_index + 2
while True:
opc = opname[code.co_code[index]]
if opc in ("STORE_NAME", "STORE_ATTR"):
name_index = int(code.co_code[index + 1])
return code.co_names[name_index]
elif opc == "STORE_FAST":
name_index = int(code.co_code[index + 1])
return code.co_varnames[name_index]
elif opc == "STORE_DEREF":
name_index = int(code.co_code[index + 1])
return code.co_cellvars[name_index]
elif opc in ("LOAD_GLOBAL", "LOAD_NAME", "LOAD_ATTR", "LOAD_FAST", "LOAD_DEREF",
"DUP_TOP", "BUILD_LIST"):
index += 2
else:
if default is _raise_exception:
raise NameNotFound
else:
return default
def get_src_loc(src_loc_at=0):
# n-th frame: get_src_loc()
# n-1th frame: caller of get_src_loc() (usually constructor)
# n-2th frame: caller of caller (usually user code)
frame = sys._getframe(2 + src_loc_at)
return (frame.f_code.co_filename, frame.f_lineno)

21
amaranth/utils.py Normal file
View file

@ -0,0 +1,21 @@
__all__ = ["log2_int", "bits_for"]
def log2_int(n, need_pow2=True):
if n == 0:
return 0
r = (n - 1).bit_length()
if need_pow2 and (1 << r) != n:
raise ValueError("{} is not a power of 2".format(n))
return r
def bits_for(n, require_sign_bit=False):
if n > 0:
r = log2_int(n + 1, False)
else:
require_sign_bit = True
r = log2_int(-n, False)
if require_sign_bit:
r += 1
return r

View file

571
amaranth/vendor/intel.py Normal file
View file

@ -0,0 +1,571 @@
from abc import abstractproperty
from ..hdl import *
from ..build import *
__all__ = ["IntelPlatform"]
class IntelPlatform(TemplatedPlatform):
"""
Quartus toolchain
-----------------
Required tools:
* ``quartus_map``
* ``quartus_fit``
* ``quartus_asm``
* ``quartus_sta``
The environment is populated by running the script specified in the environment variable
``AMARANTH_ENV_Quartus``, if present.
Available overrides:
* ``add_settings``: inserts commands at the end of the QSF file.
* ``add_constraints``: inserts commands at the end of the SDC file.
* ``nproc``: sets the number of cores used by all tools.
* ``quartus_map_opts``: adds extra options for ``quartus_map``.
* ``quartus_fit_opts``: adds extra options for ``quartus_fit``.
* ``quartus_asm_opts``: adds extra options for ``quartus_asm``.
* ``quartus_sta_opts``: adds extra options for ``quartus_sta``.
Build products:
* ``*.rpt``: toolchain reports.
* ``{{name}}.sof``: bitstream as SRAM object file.
* ``{{name}}.rbf``: bitstream as raw binary file.
Mistral toolchain
-----------------
Required tools:
* ``yosys``
* ``nextpnr-mistral``
The environment is populated by running the script specified in the environment variable
``AMARANTH_ENV_Mistral``, if present.
* ``verbose``: enables logging of informational messages to standard error.
* ``read_verilog_opts``: adds options for ``read_verilog`` Yosys command.
* ``synth_opts``: adds options for ``synth_intel_alm`` Yosys command.
* ``script_after_read``: inserts commands after ``read_ilang`` in Yosys script.
* ``script_after_synth``: inserts commands after ``synth_intel_alm`` in Yosys script.
* ``yosys_opts``: adds extra options for ``yosys``.
* ``nextpnr_opts``: adds extra options for ``nextpnr-mistral``.
"""
toolchain = None # selected when creating platform
device = abstractproperty()
package = abstractproperty()
speed = abstractproperty()
suffix = ""
# Quartus templates
quartus_suppressed_warnings = [
10264, # All case item expressions in this case statement are onehot
10270, # Incomplete Verilog case statement has no default case item
10335, # Unrecognized synthesis attribute
10763, # Verilog case statement has overlapping case item expressions with non-constant or don't care bits
10935, # Verilog casex/casez overlaps with a previous casex/vasez item expression
12125, # Using design file which is not specified as a design file for the current project, but contains definitions used in project
18236, # Number of processors not specified in QSF
292013, # Feature is only available with a valid subscription license
]
quartus_required_tools = [
"quartus_map",
"quartus_fit",
"quartus_asm",
"quartus_sta",
]
quartus_file_templates = {
**TemplatedPlatform.build_script_templates,
"build_{{name}}.sh": r"""
# {{autogenerated}}
if [ -n "${{platform._toolchain_env_var}}" ]; then
QUARTUS_ROOTDIR=$(dirname $(dirname "${{platform._toolchain_env_var}}"))
# Quartus' qenv.sh does not work with `set -e`.
. "${{platform._toolchain_env_var}}"
fi
set -e{{verbose("x")}}
{{emit_commands("sh")}}
""",
"{{name}}.v": r"""
/* {{autogenerated}} */
{{emit_verilog()}}
""",
"{{name}}.debug.v": r"""
/* {{autogenerated}} */
{{emit_debug_verilog()}}
""",
"{{name}}.qsf": r"""
# {{autogenerated}}
{% if get_override("nproc") -%}
set_global_assignment -name NUM_PARALLEL_PROCESSORS {{get_override("nproc")}}
{% endif %}
{% for file in platform.iter_files(".v") -%}
set_global_assignment -name VERILOG_FILE {{file|tcl_quote}}
{% endfor %}
{% for file in platform.iter_files(".sv") -%}
set_global_assignment -name SYSTEMVERILOG_FILE {{file|tcl_quote}}
{% endfor %}
{% for file in platform.iter_files(".vhd", ".vhdl") -%}
set_global_assignment -name VHDL_FILE {{file|tcl_quote}}
{% endfor %}
set_global_assignment -name VERILOG_FILE {{name}}.v
set_global_assignment -name TOP_LEVEL_ENTITY {{name}}
set_global_assignment -name DEVICE {{platform.device}}{{platform.package}}{{platform.speed}}{{platform.suffix}}
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
set_location_assignment -to {{port_name|tcl_quote}} PIN_{{pin_name}}
{% for key, value in attrs.items() -%}
set_instance_assignment -to {{port_name|tcl_quote}} -name {{key}} {{value|tcl_quote}}
{% endfor %}
{% endfor %}
set_global_assignment -name GENERATE_RBF_FILE ON
{{get_override("add_settings")|default("# (add_settings placeholder)")}}
""",
"{{name}}.sdc": r"""
{% for net_signal, port_signal, frequency in platform.iter_clock_constraints() -%}
{% if port_signal is not none -%}
create_clock -name {{port_signal.name|tcl_quote}} -period {{1000000000/frequency}} [get_ports {{port_signal.name|tcl_quote}}]
{% else -%}
create_clock -name {{net_signal.name|tcl_quote}} -period {{1000000000/frequency}} [get_nets {{net_signal|hierarchy("|")|tcl_quote}}]
{% endif %}
{% endfor %}
{{get_override("add_constraints")|default("# (add_constraints placeholder)")}}
""",
"{{name}}.srf": r"""
{% for warning in platform.quartus_suppressed_warnings %}
{ "" "" "" "{{name}}.v" { } { } 0 {{warning}} "" 0 0 "Design Software" 0 -1 0 ""}
{% endfor %}
""",
}
quartus_command_templates = [
r"""
{{invoke_tool("quartus_map")}}
{{get_override("quartus_map_opts")|options}}
--rev={{name}} {{name}}
""",
r"""
{{invoke_tool("quartus_fit")}}
{{get_override("quartus_fit_opts")|options}}
--rev={{name}} {{name}}
""",
r"""
{{invoke_tool("quartus_asm")}}
{{get_override("quartus_asm_opts")|options}}
--rev={{name}} {{name}}
""",
r"""
{{invoke_tool("quartus_sta")}}
{{get_override("quartus_sta_opts")|options}}
--rev={{name}} {{name}}
""",
]
# Mistral templates
mistral_required_tools = [
"yosys",
"nextpnr-mistral"
]
mistral_file_templates = {
**TemplatedPlatform.build_script_templates,
"{{name}}.il": r"""
# {{autogenerated}}
{{emit_rtlil()}}
""",
"{{name}}.debug.v": r"""
/* {{autogenerated}} */
{{emit_debug_verilog()}}
""",
"{{name}}.ys": r"""
# {{autogenerated}}
{% for file in platform.iter_files(".v") -%}
read_verilog {{get_override("read_verilog_opts")|options}} {{file}}
{% endfor %}
{% for file in platform.iter_files(".sv") -%}
read_verilog -sv {{get_override("read_verilog_opts")|options}} {{file}}
{% endfor %}
{% for file in platform.iter_files(".il") -%}
read_ilang {{file}}
{% endfor %}
read_ilang {{name}}.il
delete w:$verilog_initial_trigger
{{get_override("script_after_read")|default("# (script_after_read placeholder)")}}
synth_intel_alm {{get_override("synth_opts")|options}} -top {{name}}
{{get_override("script_after_synth")|default("# (script_after_synth placeholder)")}}
write_json {{name}}.json
""",
"{{name}}.qsf": r"""
# {{autogenerated}}
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
set_location_assignment -to {{port_name|tcl_quote}} PIN_{{pin_name}}
{% for key, value in attrs.items() -%}
set_instance_assignment -to {{port_name|tcl_quote}} -name {{key}} {{value|tcl_quote}}
{% endfor %}
{% endfor %}
""",
}
mistral_command_templates = [
r"""
{{invoke_tool("yosys")}}
{{quiet("-q")}}
{{get_override("yosys_opts")|options}}
-l {{name}}.rpt
{{name}}.ys
""",
r"""
{{invoke_tool("nextpnr-mistral")}}
{{quiet("--quiet")}}
{{get_override("nextpnr_opts")|options}}
--log {{name}}.tim
--device {{platform.device}}{{platform.package}}{{platform.speed}}{{platform.suffix}}
--json {{name}}.json
--qsf {{name}}.qsf
--rbf {{name}}.rbf
"""
]
# Common logic
def __init__(self, *, toolchain="Quartus"):
super().__init__()
assert toolchain in ("Quartus", "Mistral")
self.toolchain = toolchain
@property
def required_tools(self):
if self.toolchain == "Quartus":
return self.quartus_required_tools
if self.toolchain == "Mistral":
return self.mistral_required_tools
assert False
@property
def file_templates(self):
if self.toolchain == "Quartus":
return self.quartus_file_templates
if self.toolchain == "Mistral":
return self.mistral_file_templates
assert False
@property
def command_templates(self):
if self.toolchain == "Quartus":
return self.quartus_command_templates
if self.toolchain == "Mistral":
return self.mistral_command_templates
assert False
def add_clock_constraint(self, clock, frequency):
super().add_clock_constraint(clock, frequency)
clock.attrs["keep"] = "true"
@property
def default_clk_constraint(self):
# Internal high-speed oscillator on Cyclone V devices.
# It is specified to not be faster than 100MHz, but the actual
# frequency seems to vary a lot between devices. Measurements
# of 78 to 84 MHz have been observed.
if self.default_clk == "cyclonev_oscillator":
assert self.device.startswith("5C")
return Clock(100e6)
# Otherwise, use the defined Clock resource.
return super().default_clk_constraint
def create_missing_domain(self, name):
if name == "sync" and self.default_clk == "cyclonev_oscillator":
# Use the internal high-speed oscillator for Cyclone V devices
assert self.device.startswith("5C")
m = Module()
m.domains += ClockDomain("sync")
m.submodules += Instance("cyclonev_oscillator",
i_oscena=Const(1),
o_clkout=ClockSignal("sync"))
return m
else:
return super().create_missing_domain(name)
# The altiobuf_* and altddio_* primitives are explained in the following Intel documents:
# * https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_altiobuf.pdf
# * https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_altddio.pdf
# See also errata mentioned in: https://www.intel.com/content/www/us/en/programmable/support/support-resources/knowledge-base/solutions/rd11192012_735.html.
@staticmethod
def _get_ireg(m, pin, invert):
def get_ineg(i):
if invert:
i_neg = Signal.like(i, name_suffix="_neg")
m.d.comb += i.eq(~i_neg)
return i_neg
else:
return i
if pin.xdr == 0:
return get_ineg(pin.i)
elif pin.xdr == 1:
i_sdr = Signal(pin.width, name="{}_i_sdr")
m.submodules += Instance("$dff",
p_CLK_POLARITY=1,
p_WIDTH=pin.width,
i_CLK=pin.i_clk,
i_D=i_sdr,
o_Q=get_ineg(pin.i),
)
return i_sdr
elif pin.xdr == 2:
i_ddr = Signal(pin.width, name="{}_i_ddr".format(pin.name))
m.submodules["{}_i_ddr".format(pin.name)] = Instance("altddio_in",
p_width=pin.width,
i_datain=i_ddr,
i_inclock=pin.i_clk,
o_dataout_h=get_ineg(pin.i0),
o_dataout_l=get_ineg(pin.i1),
)
return i_ddr
assert False
@staticmethod
def _get_oreg(m, pin, invert):
def get_oneg(o):
if invert:
o_neg = Signal.like(o, name_suffix="_neg")
m.d.comb += o_neg.eq(~o)
return o_neg
else:
return o
if pin.xdr == 0:
return get_oneg(pin.o)
elif pin.xdr == 1:
o_sdr = Signal(pin.width, name="{}_o_sdr".format(pin.name))
m.submodules += Instance("$dff",
p_CLK_POLARITY=1,
p_WIDTH=pin.width,
i_CLK=pin.o_clk,
i_D=get_oneg(pin.o),
o_Q=o_sdr,
)
return o_sdr
elif pin.xdr == 2:
o_ddr = Signal(pin.width, name="{}_o_ddr".format(pin.name))
m.submodules["{}_o_ddr".format(pin.name)] = Instance("altddio_out",
p_width=pin.width,
o_dataout=o_ddr,
i_outclock=pin.o_clk,
i_datain_h=get_oneg(pin.o0),
i_datain_l=get_oneg(pin.o1),
)
return o_ddr
assert False
@staticmethod
def _get_oereg(m, pin):
# altiobuf_ requires an output enable signal for each pin, but pin.oe is 1 bit wide.
if pin.xdr == 0:
return Repl(pin.oe, pin.width)
elif pin.xdr in (1, 2):
oe_reg = Signal(pin.width, name="{}_oe_reg".format(pin.name))
oe_reg.attrs["useioff"] = "1"
m.submodules += Instance("$dff",
p_CLK_POLARITY=1,
p_WIDTH=pin.width,
i_CLK=pin.o_clk,
i_D=pin.oe,
o_Q=oe_reg,
)
return oe_reg
assert False
def get_input(self, pin, port, attrs, invert):
self._check_feature("single-ended input", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
if pin.xdr == 1:
port.attrs["useioff"] = 1
m = Module()
m.submodules[pin.name] = Instance("altiobuf_in",
p_enable_bus_hold="FALSE",
p_number_of_channels=pin.width,
p_use_differential_mode="FALSE",
i_datain=port.io,
o_dataout=self._get_ireg(m, pin, invert)
)
return m
def get_output(self, pin, port, attrs, invert):
self._check_feature("single-ended output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
if pin.xdr == 1:
port.attrs["useioff"] = 1
m = Module()
m.submodules[pin.name] = Instance("altiobuf_out",
p_enable_bus_hold="FALSE",
p_number_of_channels=pin.width,
p_use_differential_mode="FALSE",
p_use_oe="FALSE",
i_datain=self._get_oreg(m, pin, invert),
o_dataout=port.io,
)
return m
def get_tristate(self, pin, port, attrs, invert):
self._check_feature("single-ended tristate", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
if pin.xdr == 1:
port.attrs["useioff"] = 1
m = Module()
m.submodules[pin.name] = Instance("altiobuf_out",
p_enable_bus_hold="FALSE",
p_number_of_channels=pin.width,
p_use_differential_mode="FALSE",
p_use_oe="TRUE",
i_datain=self._get_oreg(m, pin, invert),
o_dataout=port.io,
i_oe=self._get_oereg(m, pin)
)
return m
def get_input_output(self, pin, port, attrs, invert):
self._check_feature("single-ended input/output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
if pin.xdr == 1:
port.attrs["useioff"] = 1
m = Module()
m.submodules[pin.name] = Instance("altiobuf_bidir",
p_enable_bus_hold="FALSE",
p_number_of_channels=pin.width,
p_use_differential_mode="FALSE",
i_datain=self._get_oreg(m, pin, invert),
io_dataio=port.io,
o_dataout=self._get_ireg(m, pin, invert),
i_oe=self._get_oereg(m, pin),
)
return m
def get_diff_input(self, pin, port, attrs, invert):
self._check_feature("differential input", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
if pin.xdr == 1:
port.p.attrs["useioff"] = 1
port.n.attrs["useioff"] = 1
m = Module()
m.submodules[pin.name] = Instance("altiobuf_in",
p_enable_bus_hold="FALSE",
p_number_of_channels=pin.width,
p_use_differential_mode="TRUE",
i_datain=port.p,
i_datain_b=port.n,
o_dataout=self._get_ireg(m, pin, invert)
)
return m
def get_diff_output(self, pin, port, attrs, invert):
self._check_feature("differential output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
if pin.xdr == 1:
port.p.attrs["useioff"] = 1
port.n.attrs["useioff"] = 1
m = Module()
m.submodules[pin.name] = Instance("altiobuf_out",
p_enable_bus_hold="FALSE",
p_number_of_channels=pin.width,
p_use_differential_mode="TRUE",
p_use_oe="FALSE",
i_datain=self._get_oreg(m, pin, invert),
o_dataout=port.p,
o_dataout_b=port.n,
)
return m
def get_diff_tristate(self, pin, port, attrs, invert):
self._check_feature("differential tristate", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
if pin.xdr == 1:
port.p.attrs["useioff"] = 1
port.n.attrs["useioff"] = 1
m = Module()
m.submodules[pin.name] = Instance("altiobuf_out",
p_enable_bus_hold="FALSE",
p_number_of_channels=pin.width,
p_use_differential_mode="TRUE",
p_use_oe="TRUE",
i_datain=self._get_oreg(m, pin, invert),
o_dataout=port.p,
o_dataout_b=port.n,
i_oe=self._get_oereg(m, pin),
)
return m
def get_diff_input_output(self, pin, port, attrs, invert):
self._check_feature("differential input/output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
if pin.xdr == 1:
port.p.attrs["useioff"] = 1
port.n.attrs["useioff"] = 1
m = Module()
m.submodules[pin.name] = Instance("altiobuf_bidir",
p_enable_bus_hold="FALSE",
p_number_of_channels=pin.width,
p_use_differential_mode="TRUE",
i_datain=self._get_oreg(m, pin, invert),
io_dataio=port.p,
io_dataio_b=port.n,
o_dataout=self._get_ireg(m, pin, invert),
i_oe=self._get_oereg(m, pin),
)
return m
# The altera_std_synchronizer{,_bundle} megafunctions embed SDC constraints that mark false
# paths, so use them instead of our default implementation.
def get_ff_sync(self, ff_sync):
return Instance("altera_std_synchronizer_bundle",
p_width=len(ff_sync.i),
p_depth=ff_sync._stages,
i_clk=ClockSignal(ff_sync._o_domain),
i_reset_n=Const(1),
i_din=ff_sync.i,
o_dout=ff_sync.o,
)
def get_async_ff_sync(self, async_ff_sync):
m = Module()
sync_output = Signal()
if async_ff_sync._edge == "pos":
m.submodules += Instance("altera_std_synchronizer",
p_depth=async_ff_sync._stages,
i_clk=ClockSignal(async_ff_sync._o_domain),
i_reset_n=~async_ff_sync.i,
i_din=Const(1),
o_dout=sync_output,
)
else:
m.submodules += Instance("altera_std_synchronizer",
p_depth=async_ff_sync._stages,
i_clk=ClockSignal(async_ff_sync._o_domain),
i_reset_n=async_ff_sync.i,
i_din=Const(1),
o_dout=sync_output,
)
m.d.comb += async_ff_sync.o.eq(~sync_output)
return m

View file

@ -0,0 +1,666 @@
from abc import abstractproperty
from ..hdl import *
from ..build import *
__all__ = ["LatticeECP5Platform"]
class LatticeECP5Platform(TemplatedPlatform):
"""
Trellis toolchain
-----------------
Required tools:
* ``yosys``
* ``nextpnr-ecp5``
* ``ecppack``
The environment is populated by running the script specified in the environment variable
``AMARANTH_ENV_Trellis``, if present.
Available overrides:
* ``verbose``: enables logging of informational messages to standard error.
* ``read_verilog_opts``: adds options for ``read_verilog`` Yosys command.
* ``synth_opts``: adds options for ``synth_ecp5`` Yosys command.
* ``script_after_read``: inserts commands after ``read_ilang`` in Yosys script.
* ``script_after_synth``: inserts commands after ``synth_ecp5`` in Yosys script.
* ``yosys_opts``: adds extra options for ``yosys``.
* ``nextpnr_opts``: adds extra options for ``nextpnr-ecp5``.
* ``ecppack_opts``: adds extra options for ``ecppack``.
* ``add_preferences``: inserts commands at the end of the LPF file.
Build products:
* ``{{name}}.rpt``: Yosys log.
* ``{{name}}.json``: synthesized RTL.
* ``{{name}}.tim``: nextpnr log.
* ``{{name}}.config``: ASCII bitstream.
* ``{{name}}.bit``: binary bitstream.
* ``{{name}}.svf``: JTAG programming vector.
Diamond toolchain
-----------------
Required tools:
* ``pnmainc``
* ``ddtcmd``
The environment is populated by running the script specified in the environment variable
``AMARANTH_ENV_Diamond``, if present. On Linux, diamond_env as provided by Diamond
itself is a good candidate. On Windows, the following script (named ``diamond_env.bat``,
for instance) is known to work::
@echo off
set PATH=C:\\lscc\\diamond\\%DIAMOND_VERSION%\\bin\\nt64;%PATH%
Available overrides:
* ``script_project``: inserts commands before ``prj_project save`` in Tcl script.
* ``script_after_export``: inserts commands after ``prj_run Export`` in Tcl script.
* ``add_preferences``: inserts commands at the end of the LPF file.
* ``add_constraints``: inserts commands at the end of the XDC file.
Build products:
* ``{{name}}_impl/{{name}}_impl.htm``: consolidated log.
* ``{{name}}.bit``: binary bitstream.
* ``{{name}}.svf``: JTAG programming vector.
"""
toolchain = None # selected when creating platform
device = abstractproperty()
package = abstractproperty()
speed = abstractproperty()
grade = "C" # [C]ommercial, [I]ndustrial
# Trellis templates
_nextpnr_device_options = {
"LFE5U-12F": "--12k",
"LFE5U-25F": "--25k",
"LFE5U-45F": "--45k",
"LFE5U-85F": "--85k",
"LFE5UM-25F": "--um-25k",
"LFE5UM-45F": "--um-45k",
"LFE5UM-85F": "--um-85k",
"LFE5UM5G-25F": "--um5g-25k",
"LFE5UM5G-45F": "--um5g-45k",
"LFE5UM5G-85F": "--um5g-85k",
}
_nextpnr_package_options = {
"BG256": "caBGA256",
"MG285": "csfBGA285",
"BG381": "caBGA381",
"BG554": "caBGA554",
"BG756": "caBGA756",
}
_trellis_required_tools = [
"yosys",
"nextpnr-ecp5",
"ecppack"
]
_trellis_file_templates = {
**TemplatedPlatform.build_script_templates,
"{{name}}.il": r"""
# {{autogenerated}}
{{emit_rtlil()}}
""",
"{{name}}.debug.v": r"""
/* {{autogenerated}} */
{{emit_debug_verilog()}}
""",
"{{name}}.ys": r"""
# {{autogenerated}}
{% for file in platform.iter_files(".v") -%}
read_verilog {{get_override("read_verilog_opts")|options}} {{file}}
{% endfor %}
{% for file in platform.iter_files(".sv") -%}
read_verilog -sv {{get_override("read_verilog_opts")|options}} {{file}}
{% endfor %}
{% for file in platform.iter_files(".il") -%}
read_ilang {{file}}
{% endfor %}
read_ilang {{name}}.il
delete w:$verilog_initial_trigger
{{get_override("script_after_read")|default("# (script_after_read placeholder)")}}
synth_ecp5 {{get_override("synth_opts")|options}} -top {{name}}
{{get_override("script_after_synth")|default("# (script_after_synth placeholder)")}}
write_json {{name}}.json
""",
"{{name}}.lpf": r"""
# {{autogenerated}}
BLOCK ASYNCPATHS;
BLOCK RESETPATHS;
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
LOCATE COMP "{{port_name}}" SITE "{{pin_name}}";
{% if attrs -%}
IOBUF PORT "{{port_name}}"
{%- for key, value in attrs.items() %} {{key}}={{value}}{% endfor %};
{% endif %}
{% endfor %}
{% for net_signal, port_signal, frequency in platform.iter_clock_constraints() -%}
{% if port_signal is not none -%}
FREQUENCY PORT "{{port_signal.name}}" {{frequency}} HZ;
{% else -%}
FREQUENCY NET "{{net_signal|hierarchy(".")}}" {{frequency}} HZ;
{% endif %}
{% endfor %}
{{get_override("add_preferences")|default("# (add_preferences placeholder)")}}
"""
}
_trellis_command_templates = [
r"""
{{invoke_tool("yosys")}}
{{quiet("-q")}}
{{get_override("yosys_opts")|options}}
-l {{name}}.rpt
{{name}}.ys
""",
r"""
{{invoke_tool("nextpnr-ecp5")}}
{{quiet("--quiet")}}
{{get_override("nextpnr_opts")|options}}
--log {{name}}.tim
{{platform._nextpnr_device_options[platform.device]}}
--package {{platform._nextpnr_package_options[platform.package]|upper}}
--speed {{platform.speed}}
--json {{name}}.json
--lpf {{name}}.lpf
--textcfg {{name}}.config
""",
r"""
{{invoke_tool("ecppack")}}
{{verbose("--verbose")}}
{{get_override("ecppack_opts")|options}}
--input {{name}}.config
--bit {{name}}.bit
--svf {{name}}.svf
"""
]
# Diamond templates
_diamond_required_tools = [
"pnmainc",
"ddtcmd"
]
_diamond_file_templates = {
**TemplatedPlatform.build_script_templates,
"build_{{name}}.sh": r"""
# {{autogenerated}}
set -e{{verbose("x")}}
if [ -z "$BASH" ] ; then exec /bin/bash "$0" "$@"; fi
if [ -n "${{platform._toolchain_env_var}}" ]; then
bindir=$(dirname "${{platform._toolchain_env_var}}")
. "${{platform._toolchain_env_var}}"
fi
{{emit_commands("sh")}}
""",
"{{name}}.v": r"""
/* {{autogenerated}} */
{{emit_verilog()}}
""",
"{{name}}.debug.v": r"""
/* {{autogenerated}} */
{{emit_debug_verilog()}}
""",
"{{name}}.tcl": r"""
prj_project new -name {{name}} -impl impl -impl_dir {{name}}_impl \
-dev {{platform.device}}-{{platform.speed}}{{platform.package}}{{platform.grade}} \
-lpf {{name}}.lpf \
-synthesis synplify
{% for file in platform.iter_files(".v", ".sv", ".vhd", ".vhdl") -%}
prj_src add {{file|tcl_escape}}
{% endfor %}
prj_src add {{name}}.v
prj_impl option top {{name}}
prj_src add {{name}}.sdc
{{get_override("script_project")|default("# (script_project placeholder)")}}
prj_project save
prj_run Synthesis -impl impl
prj_run Translate -impl impl
prj_run Map -impl impl
prj_run PAR -impl impl
prj_run Export -impl impl -task Bitgen
{{get_override("script_after_export")|default("# (script_after_export placeholder)")}}
""",
"{{name}}.lpf": r"""
# {{autogenerated}}
BLOCK ASYNCPATHS;
BLOCK RESETPATHS;
{% for port_name, pin_name, extras in platform.iter_port_constraints_bits() -%}
LOCATE COMP "{{port_name}}" SITE "{{pin_name}}";
IOBUF PORT "{{port_name}}"
{%- for key, value in extras.items() %} {{key}}={{value}}{% endfor %};
{% endfor %}
{{get_override("add_preferences")|default("# (add_preferences placeholder)")}}
""",
"{{name}}.sdc": r"""
{% for net_signal, port_signal, frequency in platform.iter_clock_constraints() -%}
{% if port_signal is not none -%}
create_clock -name {{port_signal.name|tcl_escape}} -period {{1000000000/frequency}} [get_ports {{port_signal.name|tcl_escape}}]
{% else -%}
create_clock -name {{net_signal.name|tcl_escape}} -period {{1000000000/frequency}} [get_nets {{net_signal|hierarchy("/")|tcl_escape}}]
{% endif %}
{% endfor %}
{{get_override("add_constraints")|default("# (add_constraints placeholder)")}}
""",
}
_diamond_command_templates = [
# These don't have any usable command-line option overrides.
r"""
{{invoke_tool("pnmainc")}}
{{name}}.tcl
""",
r"""
{{invoke_tool("ddtcmd")}}
-oft -bit
-if {{name}}_impl/{{name}}_impl.bit -of {{name}}.bit
""",
r"""
{{invoke_tool("ddtcmd")}}
-oft -svfsingle -revd -op "Fast Program"
-if {{name}}_impl/{{name}}_impl.bit -of {{name}}.svf
""",
]
# Common logic
def __init__(self, *, toolchain="Trellis"):
super().__init__()
assert toolchain in ("Trellis", "Diamond")
self.toolchain = toolchain
@property
def required_tools(self):
if self.toolchain == "Trellis":
return self._trellis_required_tools
if self.toolchain == "Diamond":
return self._diamond_required_tools
assert False
@property
def file_templates(self):
if self.toolchain == "Trellis":
return self._trellis_file_templates
if self.toolchain == "Diamond":
return self._diamond_file_templates
assert False
@property
def command_templates(self):
if self.toolchain == "Trellis":
return self._trellis_command_templates
if self.toolchain == "Diamond":
return self._diamond_command_templates
assert False
@property
def default_clk_constraint(self):
if self.default_clk == "OSCG":
return Clock(310e6 / self.oscg_div)
return super().default_clk_constraint
def create_missing_domain(self, name):
# Lattice ECP5 devices have two global set/reset signals: PUR, which is driven at startup
# by the configuration logic and unconditionally resets every storage element, and GSR,
# which is driven by user logic and each storage element may be configured as affected or
# unaffected by GSR. PUR is purely asynchronous, so even though it is a low-skew global
# network, its deassertion may violate a setup/hold constraint with relation to a user
# clock. To avoid this, a GSR/SGSR instance should be driven synchronized to user clock.
if name == "sync" and self.default_clk is not None:
m = Module()
if self.default_clk == "OSCG":
if not hasattr(self, "oscg_div"):
raise ValueError("OSCG divider (oscg_div) must be an integer between 2 "
"and 128")
if not isinstance(self.oscg_div, int) or self.oscg_div < 2 or self.oscg_div > 128:
raise ValueError("OSCG divider (oscg_div) must be an integer between 2 "
"and 128, not {!r}"
.format(self.oscg_div))
clk_i = Signal()
m.submodules += Instance("OSCG", p_DIV=self.oscg_div, o_OSC=clk_i)
else:
clk_i = self.request(self.default_clk).i
if self.default_rst is not None:
rst_i = self.request(self.default_rst).i
else:
rst_i = Const(0)
gsr0 = Signal()
gsr1 = Signal()
# There is no end-of-startup signal on ECP5, but PUR is released after IOB enable, so
# a simple reset synchronizer (with PUR as the asynchronous reset) does the job.
m.submodules += [
Instance("FD1S3AX", p_GSR="DISABLED", i_CK=clk_i, i_D=~rst_i, o_Q=gsr0),
Instance("FD1S3AX", p_GSR="DISABLED", i_CK=clk_i, i_D=gsr0, o_Q=gsr1),
# Although we already synchronize the reset input to user clock, SGSR has dedicated
# clock routing to the center of the FPGA; use that just in case it turns out to be
# more reliable. (None of this is documented.)
Instance("SGSR", i_CLK=clk_i, i_GSR=gsr1),
]
# GSR implicitly connects to every appropriate storage element. As such, the sync
# domain is reset-less; domains driven by other clocks would need to have dedicated
# reset circuitry or otherwise meet setup/hold constraints on their own.
m.domains += ClockDomain("sync", reset_less=True)
m.d.comb += ClockSignal("sync").eq(clk_i)
return m
_single_ended_io_types = [
"HSUL12", "LVCMOS12", "LVCMOS15", "LVCMOS18", "LVCMOS25", "LVCMOS33", "LVTTL33",
"SSTL135_I", "SSTL135_II", "SSTL15_I", "SSTL15_II", "SSTL18_I", "SSTL18_II",
]
_differential_io_types = [
"BLVDS25", "BLVDS25E", "HSUL12D", "LVCMOS18D", "LVCMOS25D", "LVCMOS33D",
"LVDS", "LVDS25E", "LVPECL33", "LVPECL33E", "LVTTL33D", "MLVDS", "MLVDS25E",
"SLVS", "SSTL135D_I", "SSTL135D_II", "SSTL15D_I", "SSTL15D_II", "SSTL18D_I",
"SSTL18D_II", "SUBLVDS",
]
def should_skip_port_component(self, port, attrs, component):
# On ECP5, a differential IO is placed by only instantiating an IO buffer primitive at
# the PIOA or PIOC location, which is always the non-inverting pin.
if attrs.get("IO_TYPE", "LVCMOS25") in self._differential_io_types and component == "n":
return True
return False
def _get_xdr_buffer(self, m, pin, *, i_invert=False, o_invert=False):
def get_ireg(clk, d, q):
for bit in range(len(q)):
m.submodules += Instance("IFS1P3DX",
i_SCLK=clk,
i_SP=Const(1),
i_CD=Const(0),
i_D=d[bit],
o_Q=q[bit]
)
def get_oreg(clk, d, q):
for bit in range(len(q)):
m.submodules += Instance("OFS1P3DX",
i_SCLK=clk,
i_SP=Const(1),
i_CD=Const(0),
i_D=d[bit],
o_Q=q[bit]
)
def get_oereg(clk, oe, q):
for bit in range(len(q)):
m.submodules += Instance("OFS1P3DX",
i_SCLK=clk,
i_SP=Const(1),
i_CD=Const(0),
i_D=oe,
o_Q=q[bit]
)
def get_iddr(sclk, d, q0, q1):
for bit in range(len(d)):
m.submodules += Instance("IDDRX1F",
i_SCLK=sclk,
i_RST=Const(0),
i_D=d[bit],
o_Q0=q0[bit], o_Q1=q1[bit]
)
def get_iddrx2(sclk, eclk, d, q0, q1, q2, q3):
for bit in range(len(d)):
m.submodules += Instance("IDDRX2F",
i_SCLK=sclk,
i_ECLK=eclk,
i_RST=Const(0),
i_D=d[bit],
o_Q0=q0[bit], o_Q1=q1[bit], o_Q2=q2[bit], o_Q3=q3[bit]
)
def get_iddr71b(sclk, eclk, d, q0, q1, q2, q3, q4, q5, q6):
for bit in range(len(d)):
m.submodules += Instance("IDDR71B",
i_SCLK=sclk,
i_ECLK=eclk,
i_RST=Const(0),
i_D=d[bit],
o_Q0=q0[bit], o_Q1=q1[bit], o_Q2=q2[bit], o_Q3=q3[bit],
o_Q4=q4[bit], o_Q5=q5[bit], o_Q6=q6[bit],
)
def get_oddr(sclk, d0, d1, q):
for bit in range(len(q)):
m.submodules += Instance("ODDRX1F",
i_SCLK=sclk,
i_RST=Const(0),
i_D0=d0[bit], i_D1=d1[bit],
o_Q=q[bit]
)
def get_oddrx2(sclk, eclk, d0, d1, d2, d3, q):
for bit in range(len(q)):
m.submodules += Instance("ODDRX2F",
i_SCLK=sclk,
i_ECLK=eclk,
i_RST=Const(0),
i_D0=d0[bit], i_D1=d1[bit], i_D2=d2[bit], i_D3=d3[bit],
o_Q=q[bit]
)
def get_oddr71b(sclk, eclk, d0, d1, d2, d3, d4, d5, d6, q):
for bit in range(len(q)):
m.submodules += Instance("ODDR71B",
i_SCLK=sclk,
i_ECLK=eclk,
i_RST=Const(0),
i_D0=d0[bit], i_D1=d1[bit], i_D2=d2[bit], i_D3=d3[bit],
i_D4=d4[bit], i_D5=d5[bit], i_D6=d6[bit],
o_Q=q[bit]
)
def get_ineg(z, invert):
if invert:
a = Signal.like(z, name_suffix="_n")
m.d.comb += z.eq(~a)
return a
else:
return z
def get_oneg(a, invert):
if invert:
z = Signal.like(a, name_suffix="_n")
m.d.comb += z.eq(~a)
return z
else:
return a
if "i" in pin.dir:
if pin.xdr < 2:
pin_i = get_ineg(pin.i, i_invert)
elif pin.xdr == 2:
pin_i0 = get_ineg(pin.i0, i_invert)
pin_i1 = get_ineg(pin.i1, i_invert)
elif pin.xdr == 4:
pin_i0 = get_ineg(pin.i0, i_invert)
pin_i1 = get_ineg(pin.i1, i_invert)
pin_i2 = get_ineg(pin.i2, i_invert)
pin_i3 = get_ineg(pin.i3, i_invert)
elif pin.xdr == 7:
pin_i0 = get_ineg(pin.i0, i_invert)
pin_i1 = get_ineg(pin.i1, i_invert)
pin_i2 = get_ineg(pin.i2, i_invert)
pin_i3 = get_ineg(pin.i3, i_invert)
pin_i4 = get_ineg(pin.i4, i_invert)
pin_i5 = get_ineg(pin.i5, i_invert)
pin_i6 = get_ineg(pin.i6, i_invert)
if "o" in pin.dir:
if pin.xdr < 2:
pin_o = get_oneg(pin.o, o_invert)
elif pin.xdr == 2:
pin_o0 = get_oneg(pin.o0, o_invert)
pin_o1 = get_oneg(pin.o1, o_invert)
elif pin.xdr == 4:
pin_o0 = get_oneg(pin.o0, o_invert)
pin_o1 = get_oneg(pin.o1, o_invert)
pin_o2 = get_oneg(pin.o2, o_invert)
pin_o3 = get_oneg(pin.o3, o_invert)
elif pin.xdr == 7:
pin_o0 = get_oneg(pin.o0, o_invert)
pin_o1 = get_oneg(pin.o1, o_invert)
pin_o2 = get_oneg(pin.o2, o_invert)
pin_o3 = get_oneg(pin.o3, o_invert)
pin_o4 = get_oneg(pin.o4, o_invert)
pin_o5 = get_oneg(pin.o5, o_invert)
pin_o6 = get_oneg(pin.o6, o_invert)
i = o = t = None
if "i" in pin.dir:
i = Signal(pin.width, name="{}_xdr_i".format(pin.name))
if "o" in pin.dir:
o = Signal(pin.width, name="{}_xdr_o".format(pin.name))
if pin.dir in ("oe", "io"):
t = Signal(pin.width, name="{}_xdr_t".format(pin.name))
if pin.xdr == 0:
if "i" in pin.dir:
i = pin_i
if "o" in pin.dir:
o = pin_o
if pin.dir in ("oe", "io"):
t = Repl(~pin.oe, pin.width)
elif pin.xdr == 1:
if "i" in pin.dir:
get_ireg(pin.i_clk, i, pin_i)
if "o" in pin.dir:
get_oreg(pin.o_clk, pin_o, o)
if pin.dir in ("oe", "io"):
get_oereg(pin.o_clk, ~pin.oe, t)
elif pin.xdr == 2:
if "i" in pin.dir:
get_iddr(pin.i_clk, i, pin_i0, pin_i1)
if "o" in pin.dir:
get_oddr(pin.o_clk, pin_o0, pin_o1, o)
if pin.dir in ("oe", "io"):
get_oereg(pin.o_clk, ~pin.oe, t)
elif pin.xdr == 4:
if "i" in pin.dir:
get_iddrx2(pin.i_clk, pin.i_fclk, i, pin_i0, pin_i1, pin_i2, pin_i3)
if "o" in pin.dir:
get_oddrx2(pin.o_clk, pin.o_fclk, pin_o0, pin_o1, pin_o2, pin_o3, o)
if pin.dir in ("oe", "io"):
get_oereg(pin.o_clk, ~pin.oe, t)
elif pin.xdr == 7:
if "i" in pin.dir:
get_iddr71b(pin.i_clk, pin.i_fclk, i, pin_i0, pin_i1, pin_i2, pin_i3, pin_i4, pin_i5, pin_i6)
if "o" in pin.dir:
get_oddr71b(pin.o_clk, pin.o_fclk, pin_o0, pin_o1, pin_o2, pin_o3, pin_o4, pin_o5, pin_o6, o)
if pin.dir in ("oe", "io"):
get_oereg(pin.o_clk, ~pin.oe, t)
else:
assert False
return (i, o, t)
def get_input(self, pin, port, attrs, invert):
self._check_feature("single-ended input", pin, attrs,
valid_xdrs=(0, 1, 2, 4, 7), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IB",
i_I=port.io[bit],
o_O=i[bit]
)
return m
def get_output(self, pin, port, attrs, invert):
self._check_feature("single-ended output", pin, attrs,
valid_xdrs=(0, 1, 2, 4, 7), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OB",
i_I=o[bit],
o_O=port.io[bit]
)
return m
def get_tristate(self, pin, port, attrs, invert):
self._check_feature("single-ended tristate", pin, attrs,
valid_xdrs=(0, 1, 2, 4, 7), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBZ",
i_T=t[bit],
i_I=o[bit],
o_O=port.io[bit]
)
return m
def get_input_output(self, pin, port, attrs, invert):
self._check_feature("single-ended input/output", pin, attrs,
valid_xdrs=(0, 1, 2, 4, 7), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("BB",
i_T=t[bit],
i_I=o[bit],
o_O=i[bit],
io_B=port.io[bit]
)
return m
def get_diff_input(self, pin, port, attrs, invert):
self._check_feature("differential input", pin, attrs,
valid_xdrs=(0, 1, 2, 4, 7), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IB",
i_I=port.p[bit],
o_O=i[bit]
)
return m
def get_diff_output(self, pin, port, attrs, invert):
self._check_feature("differential output", pin, attrs,
valid_xdrs=(0, 1, 2, 4, 7), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OB",
i_I=o[bit],
o_O=port.p[bit],
)
return m
def get_diff_tristate(self, pin, port, attrs, invert):
self._check_feature("differential tristate", pin, attrs,
valid_xdrs=(0, 1, 2, 4, 7), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBZ",
i_T=t[bit],
i_I=o[bit],
o_O=port.p[bit],
)
return m
def get_diff_input_output(self, pin, port, attrs, invert):
self._check_feature("differential input/output", pin, attrs,
valid_xdrs=(0, 1, 2, 4, 7), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("BB",
i_T=t[bit],
i_I=o[bit],
o_O=i[bit],
io_B=port.p[bit],
)
return m
# CDC primitives are not currently specialized for ECP5.
# While Diamond supports false path constraints; nextpnr-ecp5 does not.

View file

@ -0,0 +1,627 @@
from abc import abstractproperty
from ..hdl import *
from ..lib.cdc import ResetSynchronizer
from ..build import *
__all__ = ["LatticeICE40Platform"]
class LatticeICE40Platform(TemplatedPlatform):
"""
IceStorm toolchain
------------------
Required tools:
* ``yosys``
* ``nextpnr-ice40``
* ``icepack``
The environment is populated by running the script specified in the environment variable
``AMARANTH_ENV_IceStorm``, if present.
Available overrides:
* ``verbose``: enables logging of informational messages to standard error.
* ``read_verilog_opts``: adds options for ``read_verilog`` Yosys command.
* ``synth_opts``: adds options for ``synth_ice40`` Yosys command.
* ``script_after_read``: inserts commands after ``read_ilang`` in Yosys script.
* ``script_after_synth``: inserts commands after ``synth_ice40`` in Yosys script.
* ``yosys_opts``: adds extra options for ``yosys``.
* ``nextpnr_opts``: adds extra options for ``nextpnr-ice40``.
* ``add_pre_pack``: inserts commands at the end in pre-pack Python script.
* ``add_constraints``: inserts commands at the end in the PCF file.
Build products:
* ``{{name}}.rpt``: Yosys log.
* ``{{name}}.json``: synthesized RTL.
* ``{{name}}.tim``: nextpnr log.
* ``{{name}}.asc``: ASCII bitstream.
* ``{{name}}.bin``: binary bitstream.
iCECube2 toolchain
------------------
This toolchain comes in two variants: ``LSE-iCECube2`` and ``Synplify-iCECube2``.
Required tools:
* iCECube2 toolchain
* ``tclsh``
The environment is populated by setting the necessary environment variables based on
``AMARANTH_ENV_iCECube2``, which must point to the root of the iCECube2 installation, and
is required.
Available overrides:
* ``verbose``: enables logging of informational messages to standard error.
* ``lse_opts``: adds options for LSE.
* ``script_after_add``: inserts commands after ``add_file`` in Synplify Tcl script.
* ``script_after_options``: inserts commands after ``set_option`` in Synplify Tcl script.
* ``add_constraints``: inserts commands in SDC file.
* ``script_after_flow``: inserts commands after ``run_sbt_backend_auto`` in SBT
Tcl script.
Build products:
* ``{{name}}_lse.log`` (LSE) or ``{{name}}_design/{{name}}.htm`` (Synplify): synthesis log.
* ``sbt/outputs/router/{{name}}_timing.rpt``: timing report.
* ``{{name}}.edf``: EDIF netlist.
* ``{{name}}.bin``: binary bitstream.
"""
toolchain = None # selected when creating platform
device = abstractproperty()
package = abstractproperty()
# IceStorm templates
_nextpnr_device_options = {
"iCE40LP384": "--lp384",
"iCE40LP1K": "--lp1k",
"iCE40LP4K": "--lp8k",
"iCE40LP8K": "--lp8k",
"iCE40HX1K": "--hx1k",
"iCE40HX4K": "--hx8k",
"iCE40HX8K": "--hx8k",
"iCE40UP5K": "--up5k",
"iCE40UP3K": "--up5k",
"iCE5LP4K": "--u4k",
"iCE5LP2K": "--u4k",
"iCE5LP1K": "--u4k",
}
_nextpnr_package_options = {
"iCE40LP4K": ":4k",
"iCE40HX4K": ":4k",
"iCE40UP3K": "",
"iCE5LP2K": "",
"iCE5LP1K": "",
}
_icestorm_required_tools = [
"yosys",
"nextpnr-ice40",
"icepack",
]
_icestorm_file_templates = {
**TemplatedPlatform.build_script_templates,
"{{name}}.il": r"""
# {{autogenerated}}
{{emit_rtlil()}}
""",
"{{name}}.debug.v": r"""
/* {{autogenerated}} */
{{emit_debug_verilog()}}
""",
"{{name}}.ys": r"""
# {{autogenerated}}
{% for file in platform.iter_files(".v") -%}
read_verilog {{get_override("read_verilog_opts")|options}} {{file}}
{% endfor %}
{% for file in platform.iter_files(".sv") -%}
read_verilog -sv {{get_override("read_verilog_opts")|options}} {{file}}
{% endfor %}
{% for file in platform.iter_files(".il") -%}
read_ilang {{file}}
{% endfor %}
read_ilang {{name}}.il
delete w:$verilog_initial_trigger
{{get_override("script_after_read")|default("# (script_after_read placeholder)")}}
synth_ice40 {{get_override("synth_opts")|options}} -top {{name}}
{{get_override("script_after_synth")|default("# (script_after_synth placeholder)")}}
write_json {{name}}.json
""",
"{{name}}.pcf": r"""
# {{autogenerated}}
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
set_io {{port_name}} {{pin_name}}
{% endfor %}
{% for net_signal, port_signal, frequency in platform.iter_clock_constraints() -%}
set_frequency {{net_signal|hierarchy(".")}} {{frequency/1000000}}
{% endfor%}
{{get_override("add_constraints")|default("# (add_constraints placeholder)")}}
""",
}
_icestorm_command_templates = [
r"""
{{invoke_tool("yosys")}}
{{quiet("-q")}}
{{get_override("yosys_opts")|options}}
-l {{name}}.rpt
{{name}}.ys
""",
r"""
{{invoke_tool("nextpnr-ice40")}}
{{quiet("--quiet")}}
{{get_override("nextpnr_opts")|options}}
--log {{name}}.tim
{{platform._nextpnr_device_options[platform.device]}}
--package
{{platform.package|lower}}{{platform._nextpnr_package_options[platform.device]|
default("")}}
--json {{name}}.json
--pcf {{name}}.pcf
--asc {{name}}.asc
""",
r"""
{{invoke_tool("icepack")}}
{{verbose("-v")}}
{{name}}.asc
{{name}}.bin
"""
]
# iCECube2 templates
_icecube2_required_tools = [
"synthesis",
"synpwrap",
"tclsh",
]
_icecube2_file_templates = {
**TemplatedPlatform.build_script_templates,
"build_{{name}}.sh": r"""
# {{autogenerated}}
set -e{{verbose("x")}}
if [ -n "${{platform._toolchain_env_var}}" ]; then
# LSE environment
export LD_LIBRARY_PATH=${{platform._toolchain_env_var}}/LSE/bin/lin64:$LD_LIBRARY_PATH
export PATH=${{platform._toolchain_env_var}}/LSE/bin/lin64:$PATH
export FOUNDRY=${{platform._toolchain_env_var}}/LSE
# Synplify environment
export LD_LIBRARY_PATH=${{platform._toolchain_env_var}}/sbt_backend/bin/linux/opt/synpwrap:$LD_LIBRARY_PATH
export PATH=${{platform._toolchain_env_var}}/sbt_backend/bin/linux/opt/synpwrap:$PATH
export SYNPLIFY_PATH=${{platform._toolchain_env_var}}/synpbase
# Common environment
export SBT_DIR=${{platform._toolchain_env_var}}/sbt_backend
else
echo "Variable ${{platform._toolchain_env_var}} must be set" >&2; exit 1
fi
{{emit_commands("sh")}}
""",
"{{name}}.v": r"""
/* {{autogenerated}} */
{{emit_verilog()}}
""",
"{{name}}.debug.v": r"""
/* {{autogenerated}} */
{{emit_debug_verilog()}}
""",
"{{name}}_lse.prj": r"""
# {{autogenerated}}
-a SBT{{platform.family}}
-d {{platform.device}}
-t {{platform.package}}
{{get_override("lse_opts")|options|default("# (lse_opts placeholder)")}}
{% for file in platform.iter_files(".v") -%}
-ver {{file}}
{% endfor %}
-ver {{name}}.v
-sdc {{name}}.sdc
-top {{name}}
-output_edif {{name}}.edf
-logfile {{name}}_lse.log
""",
"{{name}}_syn.prj": r"""
# {{autogenerated}}
{% for file in platform.iter_files(".v", ".sv", ".vhd", ".vhdl") -%}
add_file -verilog {{file|tcl_escape}}
{% endfor %}
add_file -verilog {{name}}.v
add_file -constraint {{name}}.sdc
{{get_override("script_after_add")|default("# (script_after_add placeholder)")}}
impl -add {{name}}_design -type fpga
set_option -technology SBT{{platform.family}}
set_option -part {{platform.device}}
set_option -package {{platform.package}}
{{get_override("script_after_options")|default("# (script_after_options placeholder)")}}
project -result_format edif
project -result_file {{name}}.edf
impl -active {{name}}_design
project -run compile
project -run map
project -run fpga_mapper
file copy -force -- {{name}}_design/{{name}}.edf {{name}}.edf
""",
"{{name}}.sdc": r"""
# {{autogenerated}}
{% for net_signal, port_signal, frequency in platform.iter_clock_constraints() -%}
{% if port_signal is not none -%}
create_clock -name {{port_signal.name|tcl_escape}} -period {{1000000000/frequency}} [get_ports {{port_signal.name|tcl_escape}}]
{% else -%}
create_clock -name {{net_signal.name|tcl_escape}} -period {{1000000000/frequency}} [get_nets {{net_signal|hierarchy("/")|tcl_escape}}]
{% endif %}
{% endfor %}
{{get_override("add_constraints")|default("# (add_constraints placeholder)")}}
""",
"{{name}}.tcl": r"""
# {{autogenerated}}
set device {{platform.device}}-{{platform.package}}
set top_module {{name}}
set proj_dir .
set output_dir .
set edif_file {{name}}
set tool_options ":edifparser -y {{name}}.pcf"
set sbt_root $::env(SBT_DIR)
append sbt_tcl $sbt_root "/tcl/sbt_backend_synpl.tcl"
source $sbt_tcl
run_sbt_backend_auto $device $top_module $proj_dir $output_dir $tool_options $edif_file
{{get_override("script_after_file")|default("# (script_after_file placeholder)")}}
file copy -force -- sbt/outputs/bitmap/{{name}}_bitmap.bin {{name}}.bin
exit
""",
"{{name}}.pcf": r"""
# {{autogenerated}}
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
set_io {{port_name}} {{pin_name}}
{% endfor %}
""",
}
_lse_icecube2_command_templates = [
r"""synthesis -f {{name}}_lse.prj""",
r"""tclsh {{name}}.tcl""",
]
_synplify_icecube2_command_templates = [
r"""synpwrap -prj {{name}}_syn.prj -log {{name}}_syn.log""",
r"""tclsh {{name}}.tcl""",
]
# Common logic
def __init__(self, *, toolchain="IceStorm"):
super().__init__()
assert toolchain in ("IceStorm", "LSE-iCECube2", "Synplify-iCECube2")
self.toolchain = toolchain
@property
def family(self):
if self.device.startswith("iCE40"):
return "iCE40"
if self.device.startswith("iCE5"):
return "iCE5"
assert False
@property
def _toolchain_env_var(self):
if self.toolchain == "IceStorm":
return f"AMARANTH_ENV_{self.toolchain}"
if self.toolchain in ("LSE-iCECube2", "Synplify-iCECube2"):
return f"AMARANTH_ENV_iCECube2"
assert False
@property
def required_tools(self):
if self.toolchain == "IceStorm":
return self._icestorm_required_tools
if self.toolchain in ("LSE-iCECube2", "Synplify-iCECube2"):
return self._icecube2_required_tools
assert False
@property
def file_templates(self):
if self.toolchain == "IceStorm":
return self._icestorm_file_templates
if self.toolchain in ("LSE-iCECube2", "Synplify-iCECube2"):
return self._icecube2_file_templates
assert False
@property
def command_templates(self):
if self.toolchain == "IceStorm":
return self._icestorm_command_templates
if self.toolchain == "LSE-iCECube2":
return self._lse_icecube2_command_templates
if self.toolchain == "Synplify-iCECube2":
return self._synplify_icecube2_command_templates
assert False
@property
def default_clk_constraint(self):
# Internal high-speed oscillator: 48 MHz / (2 ^ div)
if self.default_clk == "SB_HFOSC":
return Clock(48e6 / 2 ** self.hfosc_div)
# Internal low-speed oscillator: 10 KHz
elif self.default_clk == "SB_LFOSC":
return Clock(10e3)
# Otherwise, use the defined Clock resource.
return super().default_clk_constraint
def create_missing_domain(self, name):
# For unknown reasons (no errata was ever published, and no documentation mentions this
# issue), iCE40 BRAMs read as zeroes for ~3 us after configuration and release of internal
# global reset. Note that this is a *time-based* delay, generated purely by the internal
# oscillator, which may not be observed nor influenced directly. For details, see links:
# * https://github.com/cliffordwolf/icestorm/issues/76#issuecomment-289270411
# * https://github.com/cliffordwolf/icotools/issues/2#issuecomment-299734673
#
# To handle this, it is necessary to have a global reset in any iCE40 design that may
# potentially instantiate BRAMs, and assert this reset for >3 us after configuration.
# (We add a margin of 5x to allow for PVT variation.) If the board includes a dedicated
# reset line, this line is ORed with the power on reset.
#
# If an internal oscillator is selected as the default clock source, the power-on-reset
# delay is increased to 100 us, since the oscillators are only stable after that long.
#
# The power-on reset timer counts up because the vendor tools do not support initialization
# of flip-flops.
if name == "sync" and self.default_clk is not None:
m = Module()
# Internal high-speed clock: 6 MHz, 12 MHz, 24 MHz, or 48 MHz depending on the divider.
if self.default_clk == "SB_HFOSC":
if not hasattr(self, "hfosc_div"):
raise ValueError("SB_HFOSC divider exponent (hfosc_div) must be an integer "
"between 0 and 3")
if not isinstance(self.hfosc_div, int) or self.hfosc_div < 0 or self.hfosc_div > 3:
raise ValueError("SB_HFOSC divider exponent (hfosc_div) must be an integer "
"between 0 and 3, not {!r}"
.format(self.hfosc_div))
clk_i = Signal()
m.submodules += Instance("SB_HFOSC",
i_CLKHFEN=1,
i_CLKHFPU=1,
p_CLKHF_DIV="0b{0:02b}".format(self.hfosc_div),
o_CLKHF=clk_i)
delay = int(100e-6 * self.default_clk_frequency)
# Internal low-speed clock: 10 KHz.
elif self.default_clk == "SB_LFOSC":
clk_i = Signal()
m.submodules += Instance("SB_LFOSC",
i_CLKLFEN=1,
i_CLKLFPU=1,
o_CLKLF=clk_i)
delay = int(100e-6 * self.default_clk_frequency)
# User-defined clock signal.
else:
clk_i = self.request(self.default_clk).i
delay = int(15e-6 * self.default_clk_frequency)
if self.default_rst is not None:
rst_i = self.request(self.default_rst).i
else:
rst_i = Const(0)
# Power-on-reset domain
m.domains += ClockDomain("por", reset_less=True, local=True)
timer = Signal(range(delay))
ready = Signal()
m.d.comb += ClockSignal("por").eq(clk_i)
with m.If(timer == delay):
m.d.por += ready.eq(1)
with m.Else():
m.d.por += timer.eq(timer + 1)
# Primary domain
m.domains += ClockDomain("sync")
m.d.comb += ClockSignal("sync").eq(clk_i)
if self.default_rst is not None:
m.submodules.reset_sync = ResetSynchronizer(~ready | rst_i, domain="sync")
else:
m.d.comb += ResetSignal("sync").eq(~ready)
return m
def should_skip_port_component(self, port, attrs, component):
# On iCE40, a differential input is placed by only instantiating an SB_IO primitive for
# the pin with z=0, which is the non-inverting pin. The pinout unfortunately differs
# between LP/HX and UP series:
# * for LP/HX, z=0 is DPxxB (B is non-inverting, A is inverting)
# * for UP, z=0 is IOB_xxA (A is non-inverting, B is inverting)
if attrs.get("IO_STANDARD", "SB_LVCMOS") == "SB_LVDS_INPUT" and component == "n":
return True
return False
def _get_io_buffer(self, m, pin, port, attrs, *, i_invert=False, o_invert=False,
invert_lut=False):
def get_dff(clk, d, q):
m.submodules += Instance("$dff",
p_CLK_POLARITY=1,
p_WIDTH=len(d),
i_CLK=clk,
i_D=d,
o_Q=q)
def get_ineg(y, invert):
if invert_lut:
a = Signal.like(y, name_suffix="_x{}".format(1 if invert else 0))
for bit in range(len(y)):
m.submodules += Instance("SB_LUT4",
p_LUT_INIT=Const(0b01 if invert else 0b10, 16),
i_I0=a[bit],
i_I1=Const(0),
i_I2=Const(0),
i_I3=Const(0),
o_O=y[bit])
return a
elif invert:
a = Signal.like(y, name_suffix="_n")
m.d.comb += y.eq(~a)
return a
else:
return y
def get_oneg(a, invert):
if invert_lut:
y = Signal.like(a, name_suffix="_x{}".format(1 if invert else 0))
for bit in range(len(a)):
m.submodules += Instance("SB_LUT4",
p_LUT_INIT=Const(0b01 if invert else 0b10, 16),
i_I0=a[bit],
i_I1=Const(0),
i_I2=Const(0),
i_I3=Const(0),
o_O=y[bit])
return y
elif invert:
y = Signal.like(a, name_suffix="_n")
m.d.comb += y.eq(~a)
return y
else:
return a
if "GLOBAL" in attrs:
is_global_input = bool(attrs["GLOBAL"])
del attrs["GLOBAL"]
else:
is_global_input = False
assert not (is_global_input and i_invert)
if "i" in pin.dir:
if pin.xdr < 2:
pin_i = get_ineg(pin.i, i_invert)
elif pin.xdr == 2:
pin_i0 = get_ineg(pin.i0, i_invert)
pin_i1 = get_ineg(pin.i1, i_invert)
if "o" in pin.dir:
if pin.xdr < 2:
pin_o = get_oneg(pin.o, o_invert)
elif pin.xdr == 2:
pin_o0 = get_oneg(pin.o0, o_invert)
pin_o1 = get_oneg(pin.o1, o_invert)
if "i" in pin.dir and pin.xdr == 2:
i0_ff = Signal.like(pin_i0, name_suffix="_ff")
i1_ff = Signal.like(pin_i1, name_suffix="_ff")
get_dff(pin.i_clk, i0_ff, pin_i0)
get_dff(pin.i_clk, i1_ff, pin_i1)
if "o" in pin.dir and pin.xdr == 2:
o1_ff = Signal.like(pin_o1, name_suffix="_ff")
get_dff(pin.o_clk, pin_o1, o1_ff)
for bit in range(len(port)):
io_args = [
("io", "PACKAGE_PIN", port[bit]),
*(("p", key, value) for key, value in attrs.items()),
]
if "i" not in pin.dir:
# If no input pin is requested, it is important to use a non-registered input pin
# type, because an output-only pin would not have an input clock, and if its input
# is configured as registered, this would prevent a co-located input-capable pin
# from using an input clock.
i_type = 0b01 # PIN_INPUT
elif pin.xdr == 0:
i_type = 0b01 # PIN_INPUT
elif pin.xdr > 0:
i_type = 0b00 # PIN_INPUT_REGISTERED aka PIN_INPUT_DDR
if "o" not in pin.dir:
o_type = 0b0000 # PIN_NO_OUTPUT
elif pin.xdr == 0 and pin.dir == "o":
o_type = 0b0110 # PIN_OUTPUT
elif pin.xdr == 0:
o_type = 0b1010 # PIN_OUTPUT_TRISTATE
elif pin.xdr == 1 and pin.dir == "o":
o_type = 0b0101 # PIN_OUTPUT_REGISTERED
elif pin.xdr == 1:
o_type = 0b1101 # PIN_OUTPUT_REGISTERED_ENABLE_REGISTERED
elif pin.xdr == 2 and pin.dir == "o":
o_type = 0b0100 # PIN_OUTPUT_DDR
elif pin.xdr == 2:
o_type = 0b1100 # PIN_OUTPUT_DDR_ENABLE_REGISTERED
io_args.append(("p", "PIN_TYPE", C((o_type << 2) | i_type, 6)))
if hasattr(pin, "i_clk"):
io_args.append(("i", "INPUT_CLK", pin.i_clk))
if hasattr(pin, "o_clk"):
io_args.append(("i", "OUTPUT_CLK", pin.o_clk))
if "i" in pin.dir:
if pin.xdr == 0 and is_global_input:
io_args.append(("o", "GLOBAL_BUFFER_OUTPUT", pin.i[bit]))
elif pin.xdr < 2:
io_args.append(("o", "D_IN_0", pin_i[bit]))
elif pin.xdr == 2:
# Re-register both inputs before they enter fabric. This increases hold time
# to an entire cycle, and adds one cycle of latency.
io_args.append(("o", "D_IN_0", i0_ff[bit]))
io_args.append(("o", "D_IN_1", i1_ff[bit]))
if "o" in pin.dir:
if pin.xdr < 2:
io_args.append(("i", "D_OUT_0", pin_o[bit]))
elif pin.xdr == 2:
# Re-register negedge output after it leaves fabric. This increases setup time
# to an entire cycle, and doesn't add latency.
io_args.append(("i", "D_OUT_0", pin_o0[bit]))
io_args.append(("i", "D_OUT_1", o1_ff[bit]))
if pin.dir in ("oe", "io"):
io_args.append(("i", "OUTPUT_ENABLE", pin.oe))
if is_global_input:
m.submodules["{}_{}".format(pin.name, bit)] = Instance("SB_GB_IO", *io_args)
else:
m.submodules["{}_{}".format(pin.name, bit)] = Instance("SB_IO", *io_args)
def get_input(self, pin, port, attrs, invert):
self._check_feature("single-ended input", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
self._get_io_buffer(m, pin, port.io, attrs, i_invert=invert)
return m
def get_output(self, pin, port, attrs, invert):
self._check_feature("single-ended output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
self._get_io_buffer(m, pin, port.io, attrs, o_invert=invert)
return m
def get_tristate(self, pin, port, attrs, invert):
self._check_feature("single-ended tristate", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
self._get_io_buffer(m, pin, port.io, attrs, o_invert=invert)
return m
def get_input_output(self, pin, port, attrs, invert):
self._check_feature("single-ended input/output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
self._get_io_buffer(m, pin, port.io, attrs, i_invert=invert, o_invert=invert)
return m
def get_diff_input(self, pin, port, attrs, invert):
self._check_feature("differential input", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
# See comment in should_skip_port_component above.
self._get_io_buffer(m, pin, port.p, attrs, i_invert=invert)
return m
def get_diff_output(self, pin, port, attrs, invert):
self._check_feature("differential output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
# Note that the non-inverting output pin is not driven the same way as a regular
# output pin. The inverter introduces a delay, so for a non-inverting output pin,
# an identical delay is introduced by instantiating a LUT. This makes the waveform
# perfectly symmetric in the xdr=0 case.
self._get_io_buffer(m, pin, port.p, attrs, o_invert= invert, invert_lut=True)
self._get_io_buffer(m, pin, port.n, attrs, o_invert=not invert, invert_lut=True)
return m
# Tristate bidirectional buffers are not supported on iCE40 because it requires external
# termination, which is different for differential pins configured as inputs and outputs.
# CDC primitives are not currently specialized for iCE40. It is not known if iCECube2 supports
# the necessary attributes; nextpnr-ice40 does not.

View file

@ -0,0 +1,11 @@
import warnings
from .lattice_machxo_2_3l import LatticeMachXO2Platform
__all__ = ["LatticeMachXO2Platform"]
# TODO(amaranth-0.4): remove
warnings.warn("instead of amaranth.vendor.lattice_machxo2, use amaranth.vendor.lattice_machxo_2_3l",
DeprecationWarning, stacklevel=2)

View file

@ -0,0 +1,421 @@
from abc import abstractproperty
from ..hdl import *
from ..build import *
__all__ = ["LatticeMachXO2Platform", "LatticeMachXO3LPlatform"]
# MachXO2 and MachXO3L primitives are the same. Handle both using
# one class and expose user-aliases for convenience.
class LatticeMachXO2Or3LPlatform(TemplatedPlatform):
"""
Required tools:
* ``pnmainc``
* ``ddtcmd``
The environment is populated by running the script specified in the environment variable
``AMARANTH_ENV_Diamond``, if present. On Linux, diamond_env as provided by Diamond
itself is a good candidate. On Windows, the following script (named ``diamond_env.bat``,
for instance) is known to work::
@echo off
set PATH=C:\\lscc\\diamond\\%DIAMOND_VERSION%\\bin\\nt64;%PATH%
Available overrides:
* ``script_project``: inserts commands before ``prj_project save`` in Tcl script.
* ``script_after_export``: inserts commands after ``prj_run Export`` in Tcl script.
* ``add_preferences``: inserts commands at the end of the LPF file.
* ``add_constraints``: inserts commands at the end of the XDC file.
Build products:
* ``{{name}}_impl/{{name}}_impl.htm``: consolidated log.
* ``{{name}}.jed``: JEDEC fuse file.
* ``{{name}}.bit``: binary bitstream.
* ``{{name}}.svf``: JTAG programming vector for FLASH programming.
* ``{{name}}_flash.svf``: JTAG programming vector for FLASH programming.
* ``{{name}}_sram.svf``: JTAG programming vector for SRAM programming.
"""
toolchain = "Diamond"
device = abstractproperty()
package = abstractproperty()
speed = abstractproperty()
grade = "C" # [C]ommercial, [I]ndustrial
required_tools = [
"pnmainc",
"ddtcmd"
]
file_templates = {
**TemplatedPlatform.build_script_templates,
"build_{{name}}.sh": r"""
# {{autogenerated}}
set -e{{verbose("x")}}
if [ -z "$BASH" ] ; then exec /bin/bash "$0" "$@"; fi
if [ -n "${{platform._toolchain_env_var}}" ]; then
bindir=$(dirname "${{platform._toolchain_env_var}}")
. "${{platform._toolchain_env_var}}"
fi
{{emit_commands("sh")}}
""",
"{{name}}.v": r"""
/* {{autogenerated}} */
{{emit_verilog()}}
""",
"{{name}}.debug.v": r"""
/* {{autogenerated}} */
{{emit_debug_verilog()}}
""",
"{{name}}.tcl": r"""
prj_project new -name {{name}} -impl impl -impl_dir {{name}}_impl \
-dev {{platform.device}}-{{platform.speed}}{{platform.package}}{{platform.grade}} \
-lpf {{name}}.lpf \
-synthesis synplify
{% for file in platform.iter_files(".v", ".sv", ".vhd", ".vhdl") -%}
prj_src add {{file|tcl_escape}}
{% endfor %}
prj_src add {{name}}.v
prj_impl option top {{name}}
prj_src add {{name}}.sdc
{{get_override("script_project")|default("# (script_project placeholder)")}}
prj_project save
prj_run Synthesis -impl impl
prj_run Translate -impl impl
prj_run Map -impl impl
prj_run PAR -impl impl
prj_run Export -impl impl -task Bitgen
prj_run Export -impl impl -task Jedecgen
{{get_override("script_after_export")|default("# (script_after_export placeholder)")}}
""",
"{{name}}.lpf": r"""
# {{autogenerated}}
BLOCK ASYNCPATHS;
BLOCK RESETPATHS;
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
LOCATE COMP "{{port_name}}" SITE "{{pin_name}}";
{% if attrs -%}
IOBUF PORT "{{port_name}}"
{%- for key, value in attrs.items() %} {{key}}={{value}}{% endfor %};
{% endif %}
{% endfor %}
{{get_override("add_preferences")|default("# (add_preferences placeholder)")}}
""",
"{{name}}.sdc": r"""
{% for net_signal, port_signal, frequency in platform.iter_clock_constraints() -%}
{% if port_signal is not none -%}
create_clock -name {{port_signal.name|tcl_escape}} -period {{1000000000/frequency}} [get_ports {{port_signal.name|tcl_escape}}]
{% else -%}
create_clock -name {{net_signal.name|tcl_escape}} -period {{1000000000/frequency}} [get_nets {{net_signal|hierarchy("/")|tcl_escape}}]
{% endif %}
{% endfor %}
{{get_override("add_constraints")|default("# (add_constraints placeholder)")}}
""",
}
command_templates = [
# These don't have any usable command-line option overrides.
r"""
{{invoke_tool("pnmainc")}}
{{name}}.tcl
""",
r"""
{{invoke_tool("ddtcmd")}}
-oft -bit
-if {{name}}_impl/{{name}}_impl.bit -of {{name}}.bit
""",
r"""
{{invoke_tool("ddtcmd")}}
-oft -jed
-dev {{platform.device}}-{{platform.speed}}{{platform.package}}{{platform.grade}}
-if {{name}}_impl/{{name}}_impl.jed -of {{name}}.jed
""",
r"""
{{invoke_tool("ddtcmd")}}
-oft -svfsingle -revd -op "FLASH Erase,Program,Verify"
-if {{name}}_impl/{{name}}_impl.jed -of {{name}}_flash.svf
""",
# TODO(amaranth-0.4): remove
r"""
{% if syntax == "bat" -%}
copy {{name}}_flash.svf {{name}}.svf
{% else -%}
cp {{name}}_flash.svf {{name}}.svf
{% endif %}
""",
r"""
{{invoke_tool("ddtcmd")}}
-oft -svfsingle -revd -op "SRAM Fast Program"
-if {{name}}_impl/{{name}}_impl.bit -of {{name}}_sram.svf
""",
]
def create_missing_domain(self, name):
# Lattice MachXO2/MachXO3L devices have two global set/reset signals: PUR, which is driven at
# startup by the configuration logic and unconditionally resets every storage element,
# and GSR, which is driven by user logic and each storage element may be configured as
# affected or unaffected by GSR. PUR is purely asynchronous, so even though it is
# a low-skew global network, its deassertion may violate a setup/hold constraint with
# relation to a user clock. To avoid this, a GSR/SGSR instance should be driven
# synchronized to user clock.
if name == "sync" and self.default_clk is not None:
clk_i = self.request(self.default_clk).i
if self.default_rst is not None:
rst_i = self.request(self.default_rst).i
else:
rst_i = Const(0)
gsr0 = Signal()
gsr1 = Signal()
m = Module()
# There is no end-of-startup signal on MachXO2/MachXO3L, but PUR is released after IOB
# enable, so a simple reset synchronizer (with PUR as the asynchronous reset) does the job.
m.submodules += [
Instance("FD1S3AX", p_GSR="DISABLED", i_CK=clk_i, i_D=~rst_i, o_Q=gsr0),
Instance("FD1S3AX", p_GSR="DISABLED", i_CK=clk_i, i_D=gsr0, o_Q=gsr1),
# Although we already synchronize the reset input to user clock, SGSR has dedicated
# clock routing to the center of the FPGA; use that just in case it turns out to be
# more reliable. (None of this is documented.)
Instance("SGSR", i_CLK=clk_i, i_GSR=gsr1),
]
# GSR implicitly connects to every appropriate storage element. As such, the sync
# domain is reset-less; domains driven by other clocks would need to have dedicated
# reset circuitry or otherwise meet setup/hold constraints on their own.
m.domains += ClockDomain("sync", reset_less=True)
m.d.comb += ClockSignal("sync").eq(clk_i)
return m
_single_ended_io_types = [
"PCI33", "LVTTL33", "LVCMOS33", "LVCMOS25", "LVCMOS18", "LVCMOS15", "LVCMOS12",
"LVCMOS25R33", "LVCMOS18R33", "LVCMOS18R25", "LVCMOS15R33", "LVCMOS15R25", "LVCMOS12R33",
"LVCMOS12R25", "LVCMOS10R33", "LVCMOS10R25", "SSTL25_I", "SSTL25_II", "SSTL18_I",
"SSTL18_II", "HSTL18_I", "HSTL18_II",
]
_differential_io_types = [
"LVDS25", "LVDS25E", "RSDS25", "RSDS25E", "BLVDS25", "BLVDS25E", "MLVDS25", "MLVDS25E",
"LVPECL33", "LVPECL33E", "SSTL25D_I", "SSTL25D_II", "SSTL18D_I", "SSTL18D_II",
"HSTL18D_I", "HSTL18D_II", "LVTTL33D", "LVCMOS33D", "LVCMOS25D", "LVCMOS18D", "LVCMOS15D",
"LVCMOS12D", "MIPI",
]
def should_skip_port_component(self, port, attrs, component):
# On ECP5, a differential IO is placed by only instantiating an IO buffer primitive at
# the PIOA or PIOC location, which is always the non-inverting pin.
if attrs.get("IO_TYPE", "LVCMOS25") in self._differential_io_types and component == "n":
return True
return False
def _get_xdr_buffer(self, m, pin, *, i_invert=False, o_invert=False):
def get_ireg(clk, d, q):
for bit in range(len(q)):
m.submodules += Instance("IFS1P3DX",
i_SCLK=clk,
i_SP=Const(1),
i_CD=Const(0),
i_D=d[bit],
o_Q=q[bit]
)
def get_oreg(clk, d, q):
for bit in range(len(q)):
m.submodules += Instance("OFS1P3DX",
i_SCLK=clk,
i_SP=Const(1),
i_CD=Const(0),
i_D=d[bit],
o_Q=q[bit]
)
def get_iddr(sclk, d, q0, q1):
for bit in range(len(d)):
m.submodules += Instance("IDDRXE",
i_SCLK=sclk,
i_RST=Const(0),
i_D=d[bit],
o_Q0=q0[bit], o_Q1=q1[bit]
)
def get_oddr(sclk, d0, d1, q):
for bit in range(len(q)):
m.submodules += Instance("ODDRXE",
i_SCLK=sclk,
i_RST=Const(0),
i_D0=d0[bit], i_D1=d1[bit],
o_Q=q[bit]
)
def get_ineg(z, invert):
if invert:
a = Signal.like(z, name_suffix="_n")
m.d.comb += z.eq(~a)
return a
else:
return z
def get_oneg(a, invert):
if invert:
z = Signal.like(a, name_suffix="_n")
m.d.comb += z.eq(~a)
return z
else:
return a
if "i" in pin.dir:
if pin.xdr < 2:
pin_i = get_ineg(pin.i, i_invert)
elif pin.xdr == 2:
pin_i0 = get_ineg(pin.i0, i_invert)
pin_i1 = get_ineg(pin.i1, i_invert)
if "o" in pin.dir:
if pin.xdr < 2:
pin_o = get_oneg(pin.o, o_invert)
elif pin.xdr == 2:
pin_o0 = get_oneg(pin.o0, o_invert)
pin_o1 = get_oneg(pin.o1, o_invert)
i = o = t = None
if "i" in pin.dir:
i = Signal(pin.width, name="{}_xdr_i".format(pin.name))
if "o" in pin.dir:
o = Signal(pin.width, name="{}_xdr_o".format(pin.name))
if pin.dir in ("oe", "io"):
t = Signal(1, name="{}_xdr_t".format(pin.name))
if pin.xdr == 0:
if "i" in pin.dir:
i = pin_i
if "o" in pin.dir:
o = pin_o
if pin.dir in ("oe", "io"):
t = ~pin.oe
elif pin.xdr == 1:
# Note that currently nextpnr will not pack an FF (*FS1P3DX) into the PIO.
if "i" in pin.dir:
get_ireg(pin.i_clk, i, pin_i)
if "o" in pin.dir:
get_oreg(pin.o_clk, pin_o, o)
if pin.dir in ("oe", "io"):
get_oreg(pin.o_clk, ~pin.oe, t)
elif pin.xdr == 2:
if "i" in pin.dir:
get_iddr(pin.i_clk, i, pin_i0, pin_i1)
if "o" in pin.dir:
get_oddr(pin.o_clk, pin_o0, pin_o1, o)
if pin.dir in ("oe", "io"):
# It looks like Diamond will not pack an OREG as a tristate register in a DDR PIO.
# It is not clear what is the recommended set of primitives for this task.
# Similarly, nextpnr will not pack anything as a tristate register in a DDR PIO.
get_oreg(pin.o_clk, ~pin.oe, t)
else:
assert False
return (i, o, t)
def get_input(self, pin, port, attrs, invert):
self._check_feature("single-ended input", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert)
for bit in range(len(port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IB",
i_I=port.io[bit],
o_O=i[bit]
)
return m
def get_output(self, pin, port, attrs, invert):
self._check_feature("single-ended output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(len(port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OB",
i_I=o[bit],
o_O=port.io[bit]
)
return m
def get_tristate(self, pin, port, attrs, invert):
self._check_feature("single-ended tristate", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(len(port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBZ",
i_T=t,
i_I=o[bit],
o_O=port.io[bit]
)
return m
def get_input_output(self, pin, port, attrs, invert):
self._check_feature("single-ended input/output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert)
for bit in range(len(port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("BB",
i_T=t,
i_I=o[bit],
o_O=i[bit],
io_B=port.io[bit]
)
return m
def get_diff_input(self, pin, port, attrs, invert):
self._check_feature("differential input", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IB",
i_I=port.p[bit],
o_O=i[bit]
)
return m
def get_diff_output(self, pin, port, attrs, invert):
self._check_feature("differential output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OB",
i_I=o[bit],
o_O=port.p[bit],
)
return m
def get_diff_tristate(self, pin, port, attrs, invert):
self._check_feature("differential tristate", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBZ",
i_T=t,
i_I=o[bit],
o_O=port.p[bit],
)
return m
def get_diff_input_output(self, pin, port, attrs, invert):
self._check_feature("differential input/output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("BB",
i_T=t,
i_I=o[bit],
o_O=i[bit],
io_B=port.p[bit],
)
return m
# CDC primitives are not currently specialized for MachXO2/MachXO3L.
LatticeMachXO2Platform = LatticeMachXO2Or3LPlatform
LatticeMachXO3LPlatform = LatticeMachXO2Or3LPlatform

View file

@ -0,0 +1,185 @@
from abc import abstractproperty
from ..hdl import *
from ..lib.cdc import ResetSynchronizer
from ..build import *
__all__ = ["QuicklogicPlatform"]
class QuicklogicPlatform(TemplatedPlatform):
"""
Symbiflow toolchain
-------------------
Required tools:
* ``symbiflow_synth``
* ``symbiflow_pack``
* ``symbiflow_place``
* ``symbiflow_route``
* ``symbiflow_write_fasm``
* ``symbiflow_write_bitstream``
The environment is populated by running the script specified in the environment variable
``AMARANTH_ENV_QLSymbiflow``, if present.
Available overrides:
* ``add_constraints``: inserts commands in XDC file.
"""
device = abstractproperty()
package = abstractproperty()
# Since the QuickLogic version of SymbiFlow toolchain is not upstreamed yet
# we should distinguish the QuickLogic version from mainline one.
# QuickLogic toolchain: https://github.com/QuickLogic-Corp/quicklogic-fpga-toolchain/releases
toolchain = "QLSymbiflow"
required_tools = [
"symbiflow_synth",
"symbiflow_pack",
"symbiflow_place",
"symbiflow_route",
"symbiflow_write_fasm",
"symbiflow_write_bitstream",
"symbiflow_write_openocd",
]
file_templates = {
**TemplatedPlatform.build_script_templates,
"{{name}}.v": r"""
/* {{autogenerated}} */
{{emit_verilog()}}
""",
"{{name}}.debug.v": r"""
/* {{autogenerated}} */
{{emit_debug_verilog()}}
""",
"{{name}}.pcf": r"""
# {{autogenerated}}
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
set_io {{port_name}} {{pin_name}}
{% endfor %}
""",
"{{name}}.xdc": r"""
# {{autogenerated}}
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
{% for attr_name, attr_value in attrs.items() -%}
set_property {{attr_name}} {{attr_value}} [get_ports {{port_name|tcl_escape}} }]
{% endfor %}
{% endfor %}
{{get_override("add_constraints")|default("# (add_constraints placeholder)")}}
""",
"{{name}}.sdc": r"""
# {{autogenerated}}
{% for net_signal, port_signal, frequency in platform.iter_clock_constraints() -%}
{% if port_signal is not none -%}
create_clock -period {{100000000/frequency}} {{port_signal.name|ascii_escape}}
{% endif %}
{% endfor %}
"""
}
command_templates = [
r"""
{{invoke_tool("symbiflow_synth")}}
-t {{name}}
-v {% for file in platform.iter_files(".v", ".sv", ".vhd", ".vhdl") -%} {{file}} {% endfor %} {{name}}.v
-d {{platform.device}}
-p {{name}}.pcf
-P {{platform.package}}
-x {{name}}.xdc
""",
r"""
{{invoke_tool("symbiflow_pack")}}
-e {{name}}.eblif
-d {{platform.device}}
-s {{name}}.sdc
""",
r"""
{{invoke_tool("symbiflow_place")}}
-e {{name}}.eblif
-d {{platform.device}}
-p {{name}}.pcf
-n {{name}}.net
-P {{platform.package}}
-s {{name}}.sdc
""",
r"""
{{invoke_tool("symbiflow_route")}}
-e {{name}}.eblif
-d {{platform.device}}
-s {{name}}.sdc
""",
r"""
{{invoke_tool("symbiflow_write_fasm")}}
-e {{name}}.eblif
-d {{platform.device}}
-s {{name}}.sdc
""",
r"""
{{invoke_tool("symbiflow_write_bitstream")}}
-f {{name}}.fasm
-d {{platform.device}}
-P {{platform.package}}
-b {{name}}.bit
""",
# This should be `invoke_tool("symbiflow_write_openocd")`, but isn't because of a bug in
# the QLSymbiflow v1.3.0 toolchain release.
r"""
python3 -m quicklogic_fasm.bitstream_to_openocd
{{name}}.bit
{{name}}.openocd
--osc-freq {{platform.osc_freq}}
--fpga-clk-divider {{platform.osc_div}}
""",
]
# Common logic
@property
def default_clk_constraint(self):
if self.default_clk == "sys_clk0":
return Clock(self.osc_freq / self.osc_div)
return super().default_clk_constraint
def add_clock_constraint(self, clock, frequency):
super().add_clock_constraint(clock, frequency)
clock.attrs["keep"] = "TRUE"
def create_missing_domain(self, name):
if name == "sync" and self.default_clk is not None:
m = Module()
if self.default_clk == "sys_clk0":
if not hasattr(self, "osc_div"):
raise ValueError("OSC divider (osc_div) must be an integer between 2 "
"and 512")
if not isinstance(self.osc_div, int) or self.osc_div < 2 or self.osc_div > 512:
raise ValueError("OSC divider (osc_div) must be an integer between 2 "
"and 512, not {!r}"
.format(self.osc_div))
if not hasattr(self, "osc_freq"):
raise ValueError("OSC frequency (osc_freq) must be an integer between 2100000 "
"and 80000000")
if not isinstance(self.osc_freq, int) or self.osc_freq < 2100000 or self.osc_freq > 80000000:
raise ValueError("OSC frequency (osc_freq) must be an integer between 2100000 "
"and 80000000, not {!r}"
.format(self.osc_freq))
clk_i = Signal()
sys_clk0 = Signal()
m.submodules += Instance("qlal4s3b_cell_macro",
o_Sys_Clk0=sys_clk0)
m.submodules += Instance("gclkbuff",
o_A=sys_clk0,
o_Z=clk_i)
else:
clk_i = self.request(self.default_clk).i
if self.default_rst is not None:
rst_i = self.request(self.default_rst).i
else:
rst_i = Const(0)
m.domains += ClockDomain("sync")
m.d.comb += ClockSignal("sync").eq(clk_i)
m.submodules.reset_sync = ResetSynchronizer(rst_i, domain="sync")
return m

1060
amaranth/vendor/xilinx.py Normal file

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,15 @@
import warnings
from .xilinx import XilinxPlatform
__all__ = ["Xilinx7SeriesPlatform"]
Xilinx7SeriesPlatform = XilinxPlatform
# TODO(amaranth-0.4): remove
warnings.warn("instead of amaranth.vendor.xilinx_7series.Xilinx7SeriesPlatform, "
"use amaranth.vendor.xilinx.XilinxPlatform",
DeprecationWarning, stacklevel=2)

View file

@ -0,0 +1,16 @@
import warnings
from .xilinx import XilinxPlatform
__all__ = ["XilinxSpartan3APlatform", "XilinxSpartan6Platform"]
XilinxSpartan3APlatform = XilinxPlatform
XilinxSpartan6Platform = XilinxPlatform
# TODO(amaranth-0.4): remove
warnings.warn("instead of amaranth.vendor.xilinx_spartan_3_6.XilinxSpartan3APlatform and "
".XilinxSpartan6Platform, use amaranth.vendor.xilinx.XilinxPlatform",
DeprecationWarning, stacklevel=2)

View file

@ -0,0 +1,15 @@
import warnings
from .xilinx import XilinxPlatform
__all__ = ["XilinxUltraScalePlatform"]
XilinxUltraScalePlatform = XilinxPlatform
# TODO(amaranth-0.4): remove
warnings.warn("instead of amaranth.vendor.xilinx_ultrascale.XilinxUltraScalePlatform, "
"use amaranth.vendor.xilinx.XilinxPlatform",
DeprecationWarning, stacklevel=2)

View file

@ -1,4 +1,4 @@
from nmigen import * from amaranth import *
class LEDBlinker(Elaboratable): class LEDBlinker(Elaboratable):
@ -18,7 +18,7 @@ class LEDBlinker(Elaboratable):
return m return m
# --- BUILD --- # --- BUILD ---
from nmigen_boards.icestick import * from amaranth_boards.icestick import *
ICEStickPlatform().build(LEDBlinker(), do_program=True) ICEStickPlatform().build(LEDBlinker(), do_program=True)

View file

@ -1,4 +1,4 @@
from nmigen import * from amaranth import *
class UpCounter(Elaboratable): class UpCounter(Elaboratable):
@ -41,7 +41,7 @@ class UpCounter(Elaboratable):
return m return m
# --- TEST --- # --- TEST ---
from nmigen.sim import Simulator from amaranth.sim import Simulator
dut = UpCounter(25) dut = UpCounter(25)
@ -71,7 +71,7 @@ sim.add_sync_process(bench)
with sim.write_vcd("up_counter.vcd"): with sim.write_vcd("up_counter.vcd"):
sim.run() sim.run()
# --- CONVERT --- # --- CONVERT ---
from nmigen.back import verilog from amaranth.back import verilog
top = UpCounter(25) top = UpCounter(25)

View file

@ -1,8 +1,8 @@
(* generator = "nMigen" *) (* generator = "Amaranth" *)
module top(clk, rst, en, ovf); module top(clk, rst, en, ovf);
(* src = "<nmigen-root>/nmigen/hdl/ir.py:526" *) (* src = "<amaranth-root>/amaranth/hdl/ir.py:526" *)
input clk; input clk;
(* src = "<nmigen-root>/nmigen/hdl/ir.py:526" *) (* src = "<amaranth-root>/amaranth/hdl/ir.py:526" *)
input rst; input rst;
(* src = "up_counter.py:26" *) (* src = "up_counter.py:26" *)
input en; input en;
@ -38,7 +38,7 @@ module top(clk, rst, en, ovf);
\count$next = \$3 [15:0]; \count$next = \$3 [15:0];
endcase endcase
endcase endcase
(* src = "<nmigen-root>/nmigen/hdl/xfrm.py:518" *) (* src = "<amaranth-root>/amaranth/hdl/xfrm.py:518" *)
casez (rst) casez (rst)
1'h1: 1'h1:
\count$next = 16'h0000; \count$next = 16'h0000;

View file

@ -1,167 +0,0 @@
Migen and nMigen compatibility summary
======================================
nMigen intends to provide as close to 100% compatibility to Migen as possible without compromising its other goals. However, Migen widely uses `*` imports, tends to expose implementation details, and in general does not have a well-defined interface. This document attempts to elucidate a well-defined Migen API surface (including, when necessary, private items that have been used downstream), and describes the intended nMigen replacements and their implementation status.
API change legend:
- *id*: identical
- *obs*: removed or incompatibly changed with compatibility stub provided
- *obs →n*: removed or incompatibly changed with compatibility stub provided, use *n* instead
- *brk*: removed or incompatibly changed with no replacement provided
- *brk →n*: removed or incompatibly changed with no replacement provided, use *n* instead
- *→n*: renamed to *n*
- *⇒m*: merged into *m*
- *a=→b=*: parameter *a* renamed to *b*
- *a=*: parameter *a* removed
- *.a=→.b*: attribute *a* renamed to *b*
- *.a=*: attribute *a* removed
- *?*: no decision made yet
When describing renames or replacements, `mod` refers to a 3rd-party package `mod` (no nMigen implementation provided), `.mod.item` refers to `nmigen.mod.item`, and "(import `.item`)" means that, while `item` is provided under `nmigen.mod.item`, it is aliased to, and should be imported from a shorter path for readability.
Status legend:
- () No decision yet, or no replacement implemented
- (+) Implemented replacement (the API and/or compatibility shim are provided)
- (⊕) Verified replacement and/or compatibility shim (the compatibility shim is manually reviewed and/or has 100% test coverage)
- (⊙) No direct replacement or compatibility shim is provided
Compatibility summary
---------------------
- () `fhdl``.hdl`
- (⊕) `bitcontainer``.tools`
- (⊕) `log2_int` id
- (⊕) `bits_for` id
- (⊕) `value_bits_sign``Value.shape`
- (⊕) `conv_output` **obs**
- (⊕) `decorators``.hdl.xfrm`
<br>Note: `transform_*` methods not considered part of public API.
- (⊙) `ModuleTransformer` **brk**
- (⊙) `ControlInserter` **brk**
- (⊕) `CEInserter``EnableInserter`
- (⊕) `ResetInserter` id
- (⊕) `ClockDomainsRenamer``DomainRenamer`, `cd_remapping=`→`domain_map=`
- (⊙) `edif` **brk**
- (⊕) `module` **obs**`.hdl.dsl`
<br>Note: any class inheriting from `Module` in oMigen should inherit from `Elaboratable` in nMigen and use an nMigen `Module` in its `.elaborate()` method.
- (⊕) `FinalizeError` **obs**
- (⊕) `Module` **obs**`.hdl.dsl.Module`
- (⊙) `namer` **brk**
- (⊙) `simplify` **brk**
- (⊕) `specials` **obs**
- (⊙) `Special` **brk**
- (⊕) `Tristate` **obs**
- (⊕) `TSTriple` **obs**`.lib.io.Pin`
- (⊕) `Instance``.hdl.ir.Instance`
- (⊕) `Memory` id
<br>Note: nMigen memories should not be added as submodules.
- (⊕) `.get_port` **obs**`.read_port()` + `.write_port()`
- (⊕) `_MemoryPort` **obs**`.hdl.mem.ReadPort` + `.hdl.mem.WritePort`
- (⊕) `READ_FIRST`/`WRITE_FIRST` **obs**
<br>Note: `READ_FIRST` corresponds to `mem.read_port(transparent=False)`, and `WRITE_FIRST` to `mem.read_port(transparent=True)`.
- (⊙) `NO_CHANGE` **brk**
<br>Note: in designs using `NO_CHANGE`, replace it with logic implementing required semantics explicitly, or with a different mode.
- (⊕) `structure``.hdl.ast`
- (⊕) `DUID` id
- (⊕) `_Value``Value`
<br>Note: values no longer valid as keys in `dict` and `set`; use `ValueDict` and `ValueSet` instead.
- (⊕) `wrap``Value.cast`
- (⊕) `_Operator``Operator`, `op=`→`operator=`, `.op`→`.operator`
- (⊕) `Mux` id
- (⊕) `_Slice``Slice` id
- (⊕) `_Part``Part` id
- (⊕) `Cat` id, `.l`→`.parts`
- (⊕) `Replicate``Repl`, `v=`→`value=`, `n=`→`count=`, `.v`→`.value`, `.n`→`.count`
- (⊕) `Constant``Const`, `bits_sign=`→`shape=`, `.nbits`→`.width`
- (⊕) `Signal` id, `bits_sign=`→`shape=`, `attr=`→`attrs=`, `name_override=`, `related=`, `variable=`, `.nbits`→`.width`
- (⊕) `ClockSignal` id, `cd=`→`domain=`, `.cd`→`.domain`
- (⊕) `ResetSignal` id, `cd=`→`domain=`, `.cd`→`.domain`
- (⊕) `_Statement``Statement`
- (⊕) `_Assign``Assign`, `l=`→`lhs=`, `r=`→`rhs=`
- (⊕) `_check_statement` **obs**`Statement.cast`
- (⊕) `If` **obs**`.hdl.dsl.Module.If`
- (⊕) `Case` **obs**`.hdl.dsl.Module.Switch`
- (⊕) `_ArrayProxy``.hdl.ast.ArrayProxy`, `choices=`→`elems=`, `key=`→`index=`
- (⊕) `Array` id
- (⊕) `ClockDomain``.hdl.cd.ClockDomain`
- (⊙) `_ClockDomainList` **brk**
- (⊙) `SPECIAL_INPUT`/`SPECIAL_OUTPUT`/`SPECIAL_INOUT` **brk**
- (⊙) `_Fragment` **brk**`.hdl.ir.Fragment`
- (⊙) `tools` **brk**
- (⊙) `insert_resets` **brk**`.hdl.xfrm.ResetInserter`
- (⊙) `rename_clock_domain` **brk**`.hdl.xfrm.DomainRenamer`
- (⊙) `tracer` **brk**
- (⊕) `get_var_name``.tracer.get_var_name`
- (⊙) `remove_underscore` **brk**
- (⊙) `get_obj_var_name` **brk**
- (⊙) `index_id` **brk**
- (⊙) `trace_back` **brk**
- (⊙) `verilog`
- (⊙) `DummyAttrTranslate` ?
- (⊕) `convert` **obs**`.back.verilog.convert`
- (⊙) `visit` **brk**`.hdl.xfrm`
- (⊙) `NodeVisitor` **brk**
- (⊙) `NodeTransformer` **brk**`.hdl.xfrm.ValueTransformer`/`.hdl.xfrm.StatementTransformer`
- () `genlib``.lib`
- () `cdc` ?
- (⊙) `MultiRegImpl` **brk**
- (⊕) `MultiReg``.lib.cdc.FFSynchronizer`
- () `PulseSynchronizer` ?
- () `BusSynchronizer` ?
- (⊕) `GrayCounter` **obs**`.lib.coding.GrayEncoder`
- (⊕) `GrayDecoder` **obs**`.lib.coding.GrayDecoder`
<br>Note: `.lib.coding.GrayEncoder` and `.lib.coding.GrayDecoder` are purely combinatorial.
- () `ElasticBuffer` ?
- () `lcm` ?
- () `Gearbox` ?
- (⊕) `coding` id
- (⊕) `Encoder` id
- (⊕) `PriorityEncoder` id
- (⊕) `Decoder` id
- (⊕) `PriorityDecoder` id
- () `divider` ?
- () `Divider` ?
- (⊕) `fifo``.lib.fifo`
- (⊕) `_FIFOInterface``FIFOInterface`
- (⊕) `SyncFIFO` id, `.replace=`
- (⊕) `SyncFIFOBuffered` id, `.fifo=`
- (⊕) `AsyncFIFO` ?
- (⊕) `AsyncFIFOBuffered`, `.fifo=`
- (⊕) `fsm` **obs**
<br>Note: FSMs are a part of core nMigen DSL; however, not all functionality is provided. The compatibility shim is a complete port of Migen FSM module.
- (⊙) `io` **brk**
<br>Note: all functionality in this module is a part of nMigen platform system.
- () `misc` ?
- () `split` ?
- () `displacer` ?
- () `chooser` ?
- () `timeline` ?
- () `WaitTimer` ?
- () `BitSlip` ?
- (⊕) `record` **obs**`.hdl.rec.Record`
<br>Note: nMigen uses a `Layout` object to represent record layouts.
- (⊕) `DIR_NONE` id
- (⊕) `DIR_M_TO_S``DIR_FANOUT`
- (⊕) `DIR_S_TO_M``DIR_FANIN`
- (⊕) `Record` id
- (⊙) `set_layout_parameters` **brk**
- (⊙) `layout_len` **brk**
- (⊙) `layout_get` **brk**
- (⊙) `layout_partial` **brk**
- (⊕) `resetsync` **obs**
- (⊕) `AsyncResetSynchronizer` **obs**`.lib.cdc.ResetSynchronizer`
- () `roundrobin` ?
- () `SP_WITHDRAW`/`SP_CE` ?
- () `RoundRobin` ?
- () `sort` ?
- () `BitonicSort` ?
- (⊕) `sim` **obs**`.back.pysim`
<br>Note: only items directly under `nmigen.compat.sim`, not submodules, are provided.
- (⊙) `core` **brk**
- (⊙) `vcd` **brk**`vcd`
- (⊙) `Simulator` **brk**
- (⊕) `run_simulation` **obs**`.back.pysim.Simulator`
- (⊕) `passive` **obs**`.hdl.ast.Passive`
- (⊙) `build` **brk**
<br>Note: the build system has been completely redesigned in nMigen.
- (⊙) `util` **brk**

View file

@ -1,241 +0,0 @@
*The text below is the original nMigen implementation proposal. It is provided for illustrative and historical purposes only.*
This repository contains a proposal for the design of nMigen in form of an implementation. This implementation deviates from the existing design of Migen by making several observations of its drawbacks:
* Migen is strongly tailored towards Verilog, yet translation of Migen to Verilog is not straightforward, leaves much semantics implicit (e.g. signedness, width extension, combinatorial assignments, sub-signal assignments...);
* Hierarchical designs are useful for floorplanning and optimization, yet Migen does not support them at all;
* Migen's syntax is not easily composable, and something like an FSM requires extending Migen's syntax in non-orthogonal ways;
* Migen reimplements a lot of mature open-source tooling, such as conversion of RTL to Verilog (Yosys' Verilog backend), or simulation (Icarus Verilog, Verilator, etc.), and often lacks in features, speed, or corner case handling.
* Migen requires awkward specials for some FPGA features such as asynchronous resets.
It also observes that Yosys' intermediate language, RTLIL, is an ideal target for Migen-style logic, as conversion of FHDL to RTLIL is essentially a 1:1 translation, with the exception of the related issues of naming and hierarchy.
This proposal makes several major changes to Migen that hopefully solve all of these drawbacks:
* nMigen changes FHDL's internal representation to closely match that of RTLIL;
* nMigen outputs RTLIL and relies on Yosys for conversion to Verilog, EDIF, etc;
* nMigen uses an exact mapping between FHDL signals and RTLIL names to off-load logic simulation to Icarus Verilog, Verilator, etc;
* nMigen uses an uniform, composable Python eHDL;
* nMigen outputs hierarchical RTLIL, automatically threading signals through the hierarchy;
* nMigen supports asynchronous reset directly;
* nMigen makes driving a signal from multiple clock domains a precise, hard error.
This proposal keeps in mind but does not make the following major changes:
* nMigen could be easily modified to flatten the hierarchy if a signal is driven simultaneously from multiple modules;
* nMigen could be easily modified to support `x` values (invalid / don't care) by relying on RTLIL's ability to directly represent them;
* nMigen could be easily modified to support negative edge triggered flip-flops by relying on RTLIL's ability to directly represent them;
* nMigen could be easily modified to track Python source locations of primitives and export them to RTLIL/Verilog through the `src` attribute, displaying the Python source locations in timing reports directly.
This proposal also makes the following simplifications:
* Specials are eliminated. Primitives such as memory ports are represented directly, and primitives such as tristate buffers are lowered to a selectable implementation via ordinary dependency injection (`f.submodules += platform.get_tristate(triple, io)`).
The internals of nMigen in this proposal are cleaned up, yet they are kept sufficiently close to Migen that \~all Migen code should be possible to run directly on nMigen using a syntactic compatibility layer.
One might reasonably expect that a roundtrip through RTLIL would result in unreadable Verilog.
However, this is not the case, e.g. consider the examples:
<details>
<summary>alu.v</summary>
```verilog
module \$1 (co, sel, a, b, o);
wire [17:0] _04_;
input [15:0] a;
input [15:0] b;
output co;
reg \co$next ;
output [15:0] o;
reg [15:0] \o$next ;
input [1:0] sel;
assign _04_ = $signed(+ a) + $signed(- b);
always @* begin
\o$next = 16'h0000;
\co$next = 1'h0;
casez ({ 1'h1, sel == 2'h2, sel == 1'h1, sel == 0'b0 })
4'bzzz1:
\o$next = a | b;
4'bzz1z:
\o$next = a & b;
4'bz1zz:
\o$next = a ^ b;
4'b1zzz:
{ \co$next , \o$next } = _04_[16:0];
endcase
end
assign o = \o$next ;
assign co = \co$next ;
endmodule
```
</details>
<details>
<summary>alu_hier.v</summary>
```verilog
module add(b, o, a);
wire [16:0] _0_;
input [15:0] a;
input [15:0] b;
output [15:0] o;
reg [15:0] \o$next ;
assign _0_ = a + b;
always @* begin
\o$next = 16'h0000;
\o$next = _0_[15:0];
end
assign o = \o$next ;
endmodule
module sub(b, o, a);
wire [16:0] _0_;
input [15:0] a;
input [15:0] b;
output [15:0] o;
reg [15:0] \o$next ;
assign _0_ = a - b;
always @* begin
\o$next = 16'h0000;
\o$next = _0_[15:0];
end
assign o = \o$next ;
endmodule
module top(a, b, o, add_o, sub_o, op);
input [15:0] a;
wire [15:0] add_a;
reg [15:0] \add_a$next ;
wire [15:0] add_b;
reg [15:0] \add_b$next ;
input [15:0] add_o;
input [15:0] b;
output [15:0] o;
reg [15:0] \o$next ;
input op;
wire [15:0] sub_a;
reg [15:0] \sub_a$next ;
wire [15:0] sub_b;
reg [15:0] \sub_b$next ;
input [15:0] sub_o;
add add (
.a(add_a),
.b(add_b),
.o(add_o)
);
sub sub (
.a(sub_a),
.b(sub_b),
.o(sub_o)
);
always @* begin
\o$next = 16'h0000;
\add_a$next = 16'h0000;
\add_b$next = 16'h0000;
\sub_a$next = 16'h0000;
\sub_b$next = 16'h0000;
\add_a$next = a;
\sub_a$next = a;
\add_b$next = b;
\sub_b$next = b;
casez ({ 1'h1, op })
2'bz1:
\o$next = sub_o;
2'b1z:
\o$next = add_o;
endcase
end
assign o = \o$next ;
assign add_a = \add_a$next ;
assign add_b = \add_b$next ;
assign sub_a = \sub_a$next ;
assign sub_b = \sub_b$next ;
endmodule
```
</details>
<details>
<summary>clkdiv.v</summary>
```verilog
module \$1 (sys_clk, o);
wire [16:0] _0_;
output o;
reg \o$next ;
input sys_clk;
wire sys_rst;
(* init = 16'hffff *)
reg [15:0] v = 16'hffff;
reg [15:0] \v$next ;
assign _0_ = v + 1'h1;
always @(posedge sys_clk)
v <= \v$next ;
always @* begin
\o$next = 1'h0;
\v$next = _0_[15:0];
\o$next = v[15];
casez (sys_rst)
1'h1:
\v$next = 16'hffff;
endcase
end
assign o = \o$next ;
endmodule
```
</details>
<details>
<summary>arst.v</summary>
```verilog
module \$1 (o, sys_clk, sys_rst);
wire [16:0] _0_;
output o;
reg \o$next ;
input sys_clk;
input sys_rst;
(* init = 16'h0000 *)
reg [15:0] v = 16'h0000;
reg [15:0] \v$next ;
assign _0_ = v + 1'h1;
always @(posedge sys_clk or posedge sys_rst)
if (sys_rst)
v <= 16'h0000;
else
v <= \v$next ;
always @* begin
\o$next = 1'h0;
\v$next = _0_[15:0];
\o$next = v[15];
end
assign o = \o$next ;
endmodule
```
</details>
<details>
<summary>pmux.v</summary>
```verilog
module \$1 (c, o, s, a, b);
input [15:0] a;
input [15:0] b;
input [15:0] c;
output [15:0] o;
reg [15:0] \o$next ;
input [2:0] s;
always @* begin
\o$next = 16'h0000;
casez (s)
3'bzz1:
\o$next = a;
3'bz1z:
\o$next = b;
3'b1zz:
\o$next = c;
3'hz:
\o$next = 16'h0000;
endcase
end
assign o = \o$next ;
endmodule
```
</details>

View file

@ -1,12 +1,12 @@
import os, sys import os, sys
sys.path.insert(0, os.path.abspath(".")) sys.path.insert(0, os.path.abspath("."))
import nmigen import amaranth
project = "nMigen toolchain" project = "Amaranth HDL toolchain"
version = nmigen.__version__ version = amaranth.__version__
release = version.split("+")[0] release = version.split("+")[0]
copyright = "2020, nMigen developers" copyright = "2020—2021, Amaranth HDL developers"
extensions = [ extensions = [
"sphinx.ext.intersphinx", "sphinx.ext.intersphinx",

View file

@ -1,8 +1,8 @@
The nMigen documentation Amaranth HDL documentation
######################## ##########################
.. toctree:: .. toctree::
:maxdepth: 1 :maxdepth: 1
index index
Board definitions <https://nmigen.info/nmigen-boards/latest/> Board definitions <https://amaranth-lang.org/amaranth-boards/latest/>

View file

@ -4,19 +4,19 @@ Installation
System requirements System requirements
=================== ===================
nMigen requires Python 3.6; it works on CPython_ 3.6 (or newer), and works faster on PyPy3.6_ 7.2 (or newer). Amaranth HDL requires Python 3.6; it works on CPython_ 3.6 (or newer), and works faster on PyPy3.6_ 7.2 (or newer).
For most workflows, nMigen requires Yosys_ 0.9 (or newer). A compatible version of Yosys is distributed via PyPI_ for most popular platforms. For most workflows, Amaranth requires Yosys_ 0.9 (or newer). A compatible version of Yosys is distributed via PyPI_ for most popular platforms.
Simulating nMigen code requires no additional software. However, a waveform viewer like GTKWave_ is invaluable for debugging. Simulating Amaranth code requires no additional software. However, a waveform viewer like GTKWave_ is invaluable for debugging.
Synthesizing, placing and routing an nMigen design for an FPGA requires the FPGA family specific toolchain. Synthesizing, placing and routing an Amaranth design for an FPGA requires the FPGA family specific toolchain.
.. TODO: Link to FPGA family docs here .. TODO: Link to FPGA family docs here
.. _CPython: https://www.python.org/ .. _CPython: https://www.python.org/
.. _PyPy3.6: https://www.pypy.org/ .. _PyPy3.6: https://www.pypy.org/
.. _Yosys: http://www.clifford.at/yosys/ .. _Yosys: https://yosyshq.net/yosys/
.. _PyPI: https://pypi.org/ .. _PyPI: https://pypi.org/
.. _GTKWave: http://gtkwave.sourceforge.net/ .. _GTKWave: http://gtkwave.sourceforge.net/
@ -92,10 +92,10 @@ Installing prerequisites
.. _install: .. _install:
Installing nMigen Installing Amaranth
================= ===================
The latest release of nMigen should work well for most applications. A development snapshot---any commit from the ``master`` branch of nMigen---should be similarly reliable, but is likely to include experimental API changes that will be in flux until the next release. With that in mind, development snapshots can be used to try out new functionality or to avoid bugs fixed since the last release. The latest release of Amaranth should work well for most applications. A development snapshot---any commit from the ``main`` branch of Amaranth---should be similarly reliable, but is likely to include experimental API changes that will be in flux until the next release. With that in mind, development snapshots can be used to try out new functionality or to avoid bugs fixed since the last release.
.. _install-release: .. _install-release:
@ -103,7 +103,7 @@ The latest release of nMigen should work well for most applications. A developme
Latest release Latest release
-------------- --------------
.. |release:install| replace:: To install the latest release of nMigen, run: .. |release:install| replace:: To install the latest release of Amaranth, run:
.. platform-picker:: .. platform-picker::
@ -114,7 +114,7 @@ Latest release
.. code-block:: doscon .. code-block:: doscon
> pip install --upgrade nmigen[builtin-yosys] > pip install --upgrade amaranth[builtin-yosys]
.. platform-choice:: macos .. platform-choice:: macos
:title: macOS :title: macOS
@ -123,22 +123,22 @@ Latest release
.. code-block:: console .. code-block:: console
$ pip install --user --upgrade 'nmigen[builtin-yosys]' $ pip install --user --upgrade 'amaranth[builtin-yosys]'
.. platform-choice:: linux .. platform-choice:: linux
:title: Linux :title: Linux
If you **did not** install Yosys manually in the :ref:`previous step <install-deps>`, to install the latest release of nMigen, run: If you **did not** install Yosys manually in the :ref:`previous step <install-deps>`, to install the latest release of Amaranth, run:
.. code-block:: console .. code-block:: console
$ pip3 install --user --upgrade 'nmigen[builtin-yosys]' $ pip3 install --user --upgrade 'amaranth[builtin-yosys]'
If you **did** install Yosys manually in the previous step, run: If you **did** install Yosys manually in the previous step, run:
.. code-block:: console .. code-block:: console
$ pip3 install --user --upgrade nmigen $ pip3 install --user --upgrade amaranth
.. platform-choice:: arch .. platform-choice:: arch
:altname: linux :altname: linux
@ -148,7 +148,7 @@ Latest release
.. code-block:: console .. code-block:: console
$ sudo pacman -S python-nmigen $ sudo pacman -S python-amaranth
.. _install-snapshot: .. _install-snapshot:
@ -156,7 +156,7 @@ Latest release
Development snapshot Development snapshot
-------------------- --------------------
.. |snapshot:install| replace:: To install the latest development snapshot of nMigen, run: .. |snapshot:install| replace:: To install the latest development snapshot of Amaranth, run:
.. platform-picker:: .. platform-picker::
@ -167,7 +167,7 @@ Development snapshot
.. code-block:: doscon .. code-block:: doscon
> pip install git+https://github.com/nmigen/nmigen.git#egg=nmigen[builtin-yosys] > pip install git+https://github.com/amaranth-lang/amaranth.git#egg=amaranth[builtin-yosys]
.. platform-choice:: macos .. platform-choice:: macos
:title: macOS :title: macOS
@ -176,22 +176,22 @@ Development snapshot
.. code-block:: console .. code-block:: console
$ pip install --user 'git+https://github.com/nmigen/nmigen.git#egg=nmigen[builtin-yosys]' $ pip install --user 'git+https://github.com/amaranth-lang/amaranth.git#egg=amaranth[builtin-yosys]'
.. platform-choice:: linux .. platform-choice:: linux
:title: Linux :title: Linux
If you **did not** install Yosys manually in the :ref:`previous step <install-deps>`, to install the latest release of nMigen, run: If you **did not** install Yosys manually in the :ref:`previous step <install-deps>`, to install the latest release of Amaranth, run:
.. code-block:: console .. code-block:: console
$ pip3 install --user 'git+https://github.com/nmigen/nmigen.git#egg=nmigen[builtin-yosys]' $ pip3 install --user 'git+https://github.com/amaranth-lang/amaranth.git#egg=amaranth[builtin-yosys]'
If you **did** install Yosys manually in the previous step, run: If you **did** install Yosys manually in the previous step, run:
.. code-block:: console .. code-block:: console
$ pip3 install --user 'git+https://github.com/nmigen/nmigen.git#egg=nmigen' $ pip3 install --user 'git+https://github.com/amaranth-lang/amaranth.git#egg=amaranth'
.. _install-develop: .. _install-develop:
@ -199,9 +199,9 @@ Development snapshot
Editable development snapshot Editable development snapshot
----------------------------- -----------------------------
.. |develop:first-time| replace:: To install an editable development snapshot of nMigen for the first time, run: .. |develop:first-time| replace:: To install an editable development snapshot of Amaranth for the first time, run:
.. |develop:update| replace:: Any changes made to the ``nmigen`` directory will immediately affect any code that uses nMigen. To update the snapshot, run: .. |develop:update| replace:: Any changes made to the ``amaranth`` directory will immediately affect any code that uses Amaranth. To update the snapshot, run:
.. |develop:reinstall| replace:: each time the editable development snapshot is updated in case package dependencies have been added or changed. Otherwise, code using nMigen may misbehave or crash with an ``ImportError``. .. |develop:reinstall| replace:: each time the editable development snapshot is updated in case package dependencies have been added or changed. Otherwise, code using Amaranth may misbehave or crash with an ``ImportError``.
.. platform-picker:: .. platform-picker::
@ -212,16 +212,16 @@ Editable development snapshot
.. code-block:: doscon .. code-block:: doscon
> git clone https://github.com/nmigen/nmigen > git clone https://github.com/amaranth-lang/amaranth
> cd nmigen > cd amaranth
> pip install --editable .[builtin-yosys] > pip install --editable .[builtin-yosys]
|develop:update| |develop:update|
.. code-block:: doscon .. code-block:: doscon
> cd nmigen > cd amaranth
> git pull --ff-only origin master > git pull --ff-only origin main
> pip install --editable .[builtin-yosys] > pip install --editable .[builtin-yosys]
Run the ``pip install --editable .[builtin-yosys]`` command |develop:reinstall| Run the ``pip install --editable .[builtin-yosys]`` command |develop:reinstall|
@ -233,16 +233,16 @@ Editable development snapshot
.. code-block:: console .. code-block:: console
$ git clone https://github.com/nmigen/nmigen $ git clone https://github.com/amaranth-lang/amaranth
$ cd nmigen $ cd amaranth
$ pip install --user --editable '.[builtin-yosys]' $ pip install --user --editable '.[builtin-yosys]'
|develop:update| |develop:update|
.. code-block:: console .. code-block:: console
$ cd nmigen $ cd amaranth
$ git pull --ff-only origin master $ git pull --ff-only origin main
$ pip install --user --editable '.[builtin-yosys]' $ pip install --user --editable '.[builtin-yosys]'
Run the ``pip install --editable .[builtin-yosys]`` command |develop:reinstall| Run the ``pip install --editable .[builtin-yosys]`` command |develop:reinstall|
@ -256,16 +256,16 @@ Editable development snapshot
.. code-block:: console .. code-block:: console
$ git clone https://github.com/nmigen/nmigen $ git clone https://github.com/amaranth-lang/amaranth
$ cd nmigen $ cd amaranth
$ pip3 install --user --editable '.[builtin-yosys]' $ pip3 install --user --editable '.[builtin-yosys]'
|develop:update| |develop:update|
.. code-block:: console .. code-block:: console
$ cd nmigen $ cd amaranth
$ git pull --ff-only origin master $ git pull --ff-only origin main
$ pip3 install --user --editable '.[builtin-yosys]' $ pip3 install --user --editable '.[builtin-yosys]'
Run the ``pip3 install --editable .[builtin-yosys]`` command |develop:reinstall| Run the ``pip3 install --editable .[builtin-yosys]`` command |develop:reinstall|
@ -276,4 +276,4 @@ Installing board definitions
.. todo:: .. todo::
Explain how to install `<https://github.com/nmigen/nmigen-boards>`_. Explain how to install `<https://github.com/amaranth-lang/amaranth-boards>`_.

View file

@ -1,61 +1,61 @@
.. TODO: this introduction is written for people well familiar with HDLs; we likely need .. TODO: this introduction is written for people well familiar with HDLs; we likely need
another one for people who will use nMigen as their first HDL another one for people who will use Amaranth as their first HDL
Introduction Introduction
############ ############
The core nMigen project provides an open-source toolchain for developing hardware based on synchronous digital logic using the Python programming language. It aims to be easy to learn and use, reduce or eliminate common coding mistakes, and simplify the design of complex hardware with reusable components. The Amaranth project provides an open-source toolchain for developing hardware based on synchronous digital logic using the Python programming language. It aims to be easy to learn and use, reduce or eliminate common coding mistakes, and simplify the design of complex hardware with reusable components.
The nMigen toolchain consists of the :ref:`nMigen language <intro-lang>`, the :ref:`standard library <intro-stdlib>`, the :ref:`simulator <intro-sim>`, and the :ref:`build system <intro-build>`, covering all steps of a typical FPGA development workflow. At the same time, it does not restrict the designer's choice of tools: existing industry-standard (System)Verilog or VHDL code can be integrated into an nMigen design flow, or, conversely, nMigen code can be integrated into an existing Verilog-based design flow. The Amaranth toolchain consists of the :ref:`Amaranth language <intro-lang>`, the :ref:`standard library <intro-stdlib>`, the :ref:`simulator <intro-sim>`, and the :ref:`build system <intro-build>`, covering all steps of a typical FPGA development workflow. At the same time, it does not restrict the designer's choice of tools: existing industry-standard (System)Verilog or VHDL code can be integrated into an Amaranth-based design flow, or, conversely, Amaranth code can be integrated into an existing Verilog-based design flow.
.. TODO: add links to connect_rpc docs once they exist .. TODO: add links to connect_rpc docs once they exist
.. _intro-lang: .. _intro-lang:
The nMigen language The Amaranth language
=================== =====================
The :doc:`nMigen hardware description language <lang>` is a Python library for register transfer level modeling of synchronous logic. Ordinary Python code is used to construct a netlist of a digital circuit, which can be simulated, directly synthesized via Yosys_, or converted to human-readable Verilog code for use with industry-standard toolchains. The :doc:`Amaranth hardware description language <lang>` is a Python library for register transfer level modeling of synchronous logic. Ordinary Python code is used to construct a netlist of a digital circuit, which can be simulated, directly synthesized via Yosys_, or converted to human-readable Verilog code for use with industry-standard toolchains.
By relying on the flexibility, rich functionality and widespread adoption of the Python language, the nMigen language is focused on a single task: modeling digital logic well. It has first-class support for building blocks like clock domains and finite state machines, and uses simple rules for arithmetic operations that closely match the Python semantics. Python classes, functions, loops and conditionals can be used to build organized and flexible designs; Python libraries can be seamlessly used with nMigen during design or verification; and Python development tools can process nMigen code. By relying on the flexibility, rich functionality and widespread adoption of the Python language, the Amaranth language is focused on a single task: modeling digital logic well. It has first-class support for building blocks like clock domains and finite state machines, and uses simple rules for arithmetic operations that closely match the Python semantics. Python classes, functions, loops and conditionals can be used to build organized and flexible designs; Python libraries can be seamlessly used with Amaranth during design or verification; and Python development tools can process Amaranth code.
A core design principle of the nMigen language is to be not only easy to use, but also hard to accidentally misuse. Some HDLs provide functionality that has unexpected and undesirable behavior in synthesis, often with expensive consequences, and require a significant effort in learning a "safe" coding style and adopting third-party linting tools. nMigen lacks non-synthesizable constructs and avoids error-prone inference in favor of explicit instantiation. It has many diagnostics (and regularly adds new ones) highlighting potential design issues. Most importantly, all usability issues are considered `reportable bugs`_. A core design principle of the Amaranth language is to be not only easy to use, but also hard to accidentally misuse. Some HDLs provide functionality that has unexpected and undesirable behavior in synthesis, often with expensive consequences, and require a significant effort in learning a "safe" coding style and adopting third-party linting tools. Amaranth lacks non-synthesizable constructs and avoids error-prone inference in favor of explicit instantiation. It has many diagnostics (and regularly adds new ones) highlighting potential design issues. Most importantly, all usability issues are considered `reportable bugs`_.
.. _Yosys: http://www.clifford.at/yosys/ .. _Yosys: https://yosyshq.net/yosys/
.. _reportable bugs: https://github.com/nmigen/nmigen/issues .. _reportable bugs: https://github.com/amaranth-lang/amaranth/issues
.. _intro-stdlib: .. _intro-stdlib:
The nMigen standard library The Amaranth standard library
=========================== =============================
The nMigen language comes with a standard library---a collection of essential digital design components and interfaces. It includes clock domain crossing primitives, synchronous and asynchronous FIFOs, a flexible I/O buffer interface, and more. By providing reliable building blocks out of the box, nMigen allows the designer to focus on their application and avoids subtle differences in behavior between different designs. The Amaranth language comes with a standard library---a collection of essential digital design components and interfaces. It includes clock domain crossing primitives, synchronous and asynchronous FIFOs, a flexible I/O buffer interface, and more. By providing reliable building blocks out of the box, Amaranth allows the designer to focus on their application and avoids subtle differences in behavior between different designs.
.. TODO: link to stdlib here .. TODO: link to stdlib here
Clock domain crossing often requires special treatment, such as using vendor-defined attributes or instantiating device-specific primitives. The CDC primitives in the nMigen standard library can be overridden by the platform integration, and every platform integration included with nMigen follows the vendor recommendations for CDC. Clock domain crossing often requires special treatment, such as using vendor-defined attributes or instantiating device-specific primitives. The CDC primitives in the Amaranth standard library can be overridden by the platform integration, and every platform integration included with Amaranth follows the vendor recommendations for CDC.
High-speed designs usually require the use of registered (and sometimes, geared) I/O buffers. The nMigen standard library provides a common interface to be used between I/O buffers and peripheral implementations. The nMigen build system, if used, can instantiate I/O buffers for every platform integration included with nMigen. High-speed designs usually require the use of registered (and sometimes, geared) I/O buffers. The Amaranth standard library provides a common interface to be used between I/O buffers and peripheral implementations. The Amaranth build system, if used, can instantiate I/O buffers for every platform integration included with Amaranth.
While many designs will use at least some vendor-specific functionality, the components provided by the nMigen standard library reduce the amount of code that needs to be changed when migrating between FPGA families, and the common interfaces simplify peripherals, test benches and simulations. While many designs will use at least some vendor-specific functionality, the components provided by the Amaranth standard library reduce the amount of code that needs to be changed when migrating between FPGA families, and the common interfaces simplify peripherals, test benches and simulations.
The nMigen standard library is optional: the nMigen language can be used without it. Conversely, it is possible to use the nMigen standard library components in Verilog or VHDL code, with some limitations. The Amaranth standard library is optional: the Amaranth language can be used without it. Conversely, it is possible to use the Amaranth standard library components in Verilog or VHDL code, with some limitations.
.. TODO: link to connect_rpc docs here *again* .. TODO: link to connect_rpc docs here *again*
.. _intro-sim: .. _intro-sim:
The nMigen simulator The Amaranth simulator
==================== ======================
The nMigen project includes an advanced simulator for nMigen code implemented in Python with no system dependencies; in this simulator, test benches are written as Python generator functions. Of course, it is always possible to convert an nMigen design to Verilog for use with well-known tool like `Icarus Verilog`_ or Verilator_. The Amaranth project includes an advanced simulator for Amaranth code implemented in Python with no system dependencies; in this simulator, test benches are written as Python generator functions. Of course, it is always possible to convert an Amaranth design to Verilog for use with well-known tool like `Icarus Verilog`_ or Verilator_.
The nMigen simulator is event-driven and can simulate designs with multiple clocks or asynchronous resets. Although it is slower than `Icarus Verilog`_, it compiles the netlist to Python code ahead of time, achieving remarkably high performance for a pure Python implementation---especially when running on PyPy_. The Amaranth simulator is event-driven and can simulate designs with multiple clocks or asynchronous resets. Although it is slower than `Icarus Verilog`_, it compiles the netlist to Python code ahead of time, achieving remarkably high performance for a pure Python implementation---especially when running on PyPy_.
Although nMigen does not support native code simulation or co-simulation at the moment, such support will be added in near future. Although Amaranth does not support native code simulation or co-simulation at the moment, such support will be added in near future.
.. _Icarus Verilog: http://iverilog.icarus.com/ .. _Icarus Verilog: http://iverilog.icarus.com/
.. _Verilator: https://www.veripool.org/wiki/verilator .. _Verilator: https://www.veripool.org/wiki/verilator
@ -65,10 +65,10 @@ Although nMigen does not support native code simulation or co-simulation at the
.. _intro-build: .. _intro-build:
The nMigen build system The Amaranth build system
======================= =========================
To achieve an end-to-end FPGA development workflow, the nMigen project integrates with all major FPGA toolchains and provides definitions for many common development boards. To achieve an end-to-end FPGA development workflow, the Amaranth project integrates with all major FPGA toolchains and provides definitions for many common development boards.
.. TODO: link to vendor docs and board docs here .. TODO: link to vendor docs and board docs here
@ -76,18 +76,18 @@ To achieve an end-to-end FPGA development workflow, the nMigen project integrate
FPGA toolchain integration FPGA toolchain integration
-------------------------- --------------------------
Each FPGA family requires the use of synthesis and place & route tools specific for that device family. The nMigen build system directly integrates with every major open-source and commercial FPGA toolchain, and can be easily extended to cover others. Each FPGA family requires the use of synthesis and place & route tools specific for that device family. The Amaranth build system directly integrates with every major open-source and commercial FPGA toolchain, and can be easily extended to cover others.
Through this integration, nMigen can specialize the CDC primitives and I/O buffers for a particular device and toolchain; generate I/O and clock constraints from board definition files; synchronize the power-on reset in single-clock designs; include (System)Verilog and VHDL files in the design (if supported by the toolchain); and finally, generate a script running synthesis, placement, routing, and timing analysis. The generated code can be customized to insert additional options, commands, constraints, and so on. Through this integration, Amaranth can specialize the CDC primitives and I/O buffers for a particular device and toolchain; generate I/O and clock constraints from board definition files; synchronize the power-on reset in single-clock designs; include (System)Verilog and VHDL files in the design (if supported by the toolchain); and finally, generate a script running synthesis, placement, routing, and timing analysis. The generated code can be customized to insert additional options, commands, constraints, and so on.
The nMigen build system produces self-contained, portable build trees that require only the toolchain to be present in the environment. This makes builds easier to reproduce, or to run on a remote machine. The generated build scripts are always provided for both \*nix and Windows. The Amaranth build system produces self-contained, portable build trees that require only the toolchain to be present in the environment. This makes builds easier to reproduce, or to run on a remote machine. The generated build scripts are always provided for both \*nix and Windows.
Development board definitions Development board definitions
----------------------------- -----------------------------
Getting started with a new FPGA development board often requires going through a laborous and error-prone process of deriving toolchain configuration and constraint files from the supplied documentation. The nMigen project includes a community-maintained repository of definitions for many open-source and commercial FPGA development boards. Getting started with a new FPGA development board often requires going through a laborous and error-prone process of deriving toolchain configuration and constraint files from the supplied documentation. The Amaranth project includes a community-maintained repository of definitions for many open-source and commercial FPGA development boards.
These board definitions contain everything that is necessary to start using the board: FPGA family and model, clocks and resets, descriptions of on-board peripherals (including pin direction and attributes such as I/O standard), connector pinouts, and for boards with a built-in debug probe, the steps required to program the board. It takes a single Python invocation to generate, build, and download a test design that shows whether the board, toolchain, and programmer are working correctly. These board definitions contain everything that is necessary to start using the board: FPGA family and model, clocks and resets, descriptions of on-board peripherals (including pin direction and attributes such as I/O standard), connector pinouts, and for boards with a built-in debug probe, the steps required to program the board. It takes a single Python invocation to generate, build, and download a test design that shows whether the board, toolchain, and programmer are working correctly.
nMigen establishes a pin naming convention for many common peripherals (such as 7-segment displays, SPI flashes and SDRAM memories), enabling the reuse of unmodified interface code with many different boards. Further, the polarity of all control signals is unified to be active high, eliminating accidental polarity inversions and making simulation traces easier to follow; active low signals are inverted during I/O buffer instantiation. Amaranth establishes a pin naming convention for many common peripherals (such as 7-segment displays, SPI flashes and SDRAM memories), enabling the reuse of unmodified interface code with many different boards. Further, the polarity of all control signals is unified to be active high, eliminating accidental polarity inversions and making simulation traces easier to follow; active low signals are inverted during I/O buffer instantiation.

View file

@ -5,7 +5,7 @@ Language guide
This guide is a work in progress and is seriously incomplete! This guide is a work in progress and is seriously incomplete!
This guide introduces the nMigen language in depth. It assumes familiarity with synchronous digital logic and the Python programming language, but does not require prior experience with any hardware description language. See the :doc:`tutorial <tutorial>` for a step-by-step introduction to the language. This guide introduces the Amaranth language in depth. It assumes familiarity with synchronous digital logic and the Python programming language, but does not require prior experience with any hardware description language. See the :doc:`tutorial <tutorial>` for a step-by-step introduction to the language.
.. TODO: link to a good synchronous logic tutorial and a Python tutorial? .. TODO: link to a good synchronous logic tutorial and a Python tutorial?
@ -15,23 +15,23 @@ This guide introduces the nMigen language in depth. It assumes familiarity with
The prelude The prelude
=========== ===========
Because nMigen is a regular Python library, it needs to be imported before use. The root ``nmigen`` module, called *the prelude*, is carefully curated to export a small amount of the most essential names, useful in nearly every design. In source files dedicated to nMigen code, it is a good practice to use a :ref:`glob import <python:tut-pkg-import-star>` for readability: Because Amaranth is a regular Python library, it needs to be imported before use. The root ``amaranth`` module, called *the prelude*, is carefully curated to export a small amount of the most essential names, useful in nearly every design. In source files dedicated to Amaranth code, it is a good practice to use a :ref:`glob import <python:tut-pkg-import-star>` for readability:
.. code-block:: .. code-block::
from nmigen import * from amaranth import *
However, if a source file uses nMigen together with other libraries, or if glob imports are frowned upon, it is conventional to use a short alias instead: However, if a source file uses Amaranth together with other libraries, or if glob imports are frowned upon, it is conventional to use a short alias instead:
.. code-block:: .. code-block::
import nmigen as nm import amaranth as am
All of the examples below assume that a glob import is used. All of the examples below assume that a glob import is used.
.. testsetup:: .. testsetup::
from nmigen import * from amaranth import *
.. _lang-values: .. _lang-values:
@ -39,7 +39,7 @@ All of the examples below assume that a glob import is used.
Values Values
====== ======
The basic building block of the nMigen language is a *value*, which is a term for a binary number that is computed or stored anywhere in the design. Each value has a *width*---the amount of bits used to represent the value---and a *signedness*---the interpretation of the value by arithmetic operations---collectively called its *shape*. Signed values always use `two's complement`_ representation. The basic building block of the Amaranth language is a *value*, which is a term for a binary number that is computed or stored anywhere in the design. Each value has a *width*---the amount of bits used to represent the value---and a *signedness*---the interpretation of the value by arithmetic operations---collectively called its *shape*. Signed values always use `two's complement`_ representation.
.. _two's complement: https://en.wikipedia.org/wiki/Two's_complement .. _two's complement: https://en.wikipedia.org/wiki/Two's_complement
@ -49,14 +49,14 @@ The basic building block of the nMigen language is a *value*, which is a term fo
Constants Constants
========= =========
The simplest nMigen value is a *constant*, representing a fixed number, and introduced using ``Const(...)`` or its short alias ``C(...)``: The simplest Amaranth value is a *constant*, representing a fixed number, and introduced using ``Const(...)`` or its short alias ``C(...)``:
.. doctest:: .. doctest::
>>> ten = Const(10) >>> ten = Const(10)
>>> minus_two = C(-2) >>> minus_two = C(-2)
The code above does not specify any shape for the constants. If the shape is omitted, nMigen uses unsigned shape for positive numbers and signed shape for negative numbers, with the width inferred from the smallest amount of bits necessary to represent the number. As a special case, in order to get the same inferred shape for ``True`` and ``False``, ``0`` is considered to be 1-bit unsigned. The code above does not specify any shape for the constants. If the shape is omitted, Amaranth uses unsigned shape for positive numbers and signed shape for negative numbers, with the width inferred from the smallest amount of bits necessary to represent the number. As a special case, in order to get the same inferred shape for ``True`` and ``False``, ``0`` is considered to be 1-bit unsigned.
.. doctest:: .. doctest::
@ -212,7 +212,7 @@ Specifying a shape with an enumeration is convenient for finite state machines,
Value casting Value casting
============= =============
Like shapes, values may be *cast* from other objects, which are called *value-castable*. Casting allows objects that are not provided by nMigen, such as integers or enumeration members, to be used in nMigen expressions directly. Like shapes, values may be *cast* from other objects, which are called *value-castable*. Casting allows objects that are not provided by Amaranth, such as integers or enumeration members, to be used in Amaranth expressions directly.
.. TODO: link to UserValue .. TODO: link to UserValue
@ -348,7 +348,7 @@ Signals assigned in a :ref:`combinatorial <lang-comb>` domain are not affected b
Operators Operators
========= =========
To describe computations, nMigen values can be combined with each other or with :ref:`value-castable <lang-valuecasting>` objects using a rich array of arithmetic, bitwise, logical, bit sequence, and other *operators* to form *expressions*, which are themselves values. To describe computations, Amaranth values can be combined with each other or with :ref:`value-castable <lang-valuecasting>` objects using a rich array of arithmetic, bitwise, logical, bit sequence, and other *operators* to form *expressions*, which are themselves values.
.. _lang-abstractexpr: .. _lang-abstractexpr:
@ -364,7 +364,7 @@ Code written in the Python language *performs* computations on concrete objects,
>>> a + 1 >>> a + 1
6 6
In contrast, code written in the nMigen language *describes* computations on abstract objects, like :ref:`signals <lang-signals>`, with the goal of generating a hardware *circuit* that can be simulated, synthesized, and so on. nMigen expressions are ordinary Python objects that represent parts of this circuit: In contrast, code written in the Amaranth language *describes* computations on abstract objects, like :ref:`signals <lang-signals>`, with the goal of generating a hardware *circuit* that can be simulated, synthesized, and so on. Amaranth expressions are ordinary Python objects that represent parts of this circuit:
.. doctest:: .. doctest::
@ -372,7 +372,7 @@ In contrast, code written in the nMigen language *describes* computations on abs
>>> a + 1 >>> a + 1
(+ (sig a) (const 1'd1)) (+ (sig a) (const 1'd1))
Although the syntax is similar, it is important to remember that nMigen values exist on a higher level of abstraction than Python values. For example, expressions that include nMigen values cannot be used in Python control flow structures: Although the syntax is similar, it is important to remember that Amaranth values exist on a higher level of abstraction than Python values. For example, expressions that include Amaranth values cannot be used in Python control flow structures:
.. doctest:: .. doctest::
@ -380,9 +380,9 @@ Although the syntax is similar, it is important to remember that nMigen values e
... print("Zero!") ... print("Zero!")
Traceback (most recent call last): Traceback (most recent call last):
... ...
TypeError: Attempted to convert nMigen value to Python boolean TypeError: Attempted to convert Amaranth value to Python boolean
Because the value of ``a``, and therefore ``a == 0``, is not known at the time when the ``if`` statement is executed, there is no way to decide whether the body of the statement should be executed---in fact, if the design is synthesized, by the time ``a`` has any concrete value, the Python program has long finished! To solve this problem, nMigen provides its own :ref:`control structures <lang-control>` that, also, manipulate circuits. Because the value of ``a``, and therefore ``a == 0``, is not known at the time when the ``if`` statement is executed, there is no way to decide whether the body of the statement should be executed---in fact, if the design is synthesized, by the time ``a`` has any concrete value, the Python program has long finished! To solve this problem, Amaranth provides its own :ref:`control structures <lang-control>` that, also, manipulate circuits.
.. _lang-widthext: .. _lang-widthext:
@ -398,9 +398,9 @@ Many of the operations described below (for example, addition, equality, bitwise
Arithmetic operators Arithmetic operators
-------------------- --------------------
Most arithmetic operations on integers provided by Python can be used on nMigen values, too. Most arithmetic operations on integers provided by Python can be used on Amaranth values, too.
Although Python integers have unlimited precision and nMigen values are represented with a :ref:`finite amount of bits <lang-values>`, arithmetics on nMigen values never overflows because the width of the arithmetic expression is always sufficient to represent all possible results. Although Python integers have unlimited precision and Amaranth values are represented with a :ref:`finite amount of bits <lang-values>`, arithmetics on Amaranth values never overflows because the width of the arithmetic expression is always sufficient to represent all possible results.
.. doctest:: .. doctest::
@ -408,7 +408,7 @@ Although Python integers have unlimited precision and nMigen values are represen
>>> (a + 1).shape() # needs to represent 1 to 256 >>> (a + 1).shape() # needs to represent 1 to 256
unsigned(9) unsigned(9)
Similarly, although Python integers are always signed and nMigen values can be either :ref:`signed or unsigned <lang-values>`, if any of the operands of an nMigen arithmetic expression is signed, the expression itself is also signed, matching the behavior of Python. Similarly, although Python integers are always signed and Amaranth values can be either :ref:`signed or unsigned <lang-values>`, if any of the operands of an Amaranth arithmetic expression is signed, the expression itself is also signed, matching the behavior of Python.
.. doctest:: .. doctest::
@ -419,7 +419,7 @@ Similarly, although Python integers are always signed and nMigen values can be e
While arithmetic computations never result in an overflow, :ref:`assigning <lang-assigns>` their results to signals may truncate the most significant bits. While arithmetic computations never result in an overflow, :ref:`assigning <lang-assigns>` their results to signals may truncate the most significant bits.
The following table lists the arithmetic operations provided by nMigen: The following table lists the arithmetic operations provided by Amaranth:
============ ========================== ====== ============ ========================== ======
Operation Description Notes Operation Description Notes
@ -433,7 +433,7 @@ Operation Description Notes
``abs(a)`` absolute value ``abs(a)`` absolute value
============ ========================== ====== ============ ========================== ======
.. [#opA1] Divisor must be unsigned; this is an nMigen limitation that may be lifted in the future. .. [#opA1] Divisor must be unsigned; this is an Amaranth limitation that may be lifted in the future.
.. _lang-cmpops: .. _lang-cmpops:
@ -441,11 +441,11 @@ Operation Description Notes
Comparison operators Comparison operators
-------------------- --------------------
All comparison operations on integers provided by Python can be used on nMigen values. However, due to a limitation of Python, chained comparisons (e.g. ``a < b < c``) cannot be used. All comparison operations on integers provided by Python can be used on Amaranth values. However, due to a limitation of Python, chained comparisons (e.g. ``a < b < c``) cannot be used.
Similar to arithmetic operations, if any operand of a comparison expression is signed, a signed comparison is performed. The result of a comparison is a 1-bit unsigned value. Similar to arithmetic operations, if any operand of a comparison expression is signed, a signed comparison is performed. The result of a comparison is a 1-bit unsigned value.
The following table lists the comparison operations provided by nMigen: The following table lists the comparison operations provided by Amaranth:
============ ========================== ============ ==========================
Operation Description Operation Description
@ -464,13 +464,13 @@ Operation Description
Bitwise, shift, and rotate operators Bitwise, shift, and rotate operators
------------------------------------ ------------------------------------
All bitwise and shift operations on integers provided by Python can be used on nMigen values as well. All bitwise and shift operations on integers provided by Python can be used on Amaranth values as well.
Similar to arithmetic operations, if any operand of a bitwise expression is signed, the expression itself is signed as well. A shift expression is signed if the shifted value is signed. A rotate expression is always unsigned. Similar to arithmetic operations, if any operand of a bitwise expression is signed, the expression itself is signed as well. A shift expression is signed if the shifted value is signed. A rotate expression is always unsigned.
Rotate operations with variable rotate amounts cannot be efficiently synthesized for non-power-of-2 widths of the rotated value. Because of that, the rotate operations are only provided for constant rotate amounts, specified as Python :py:class:`int`\ s. Rotate operations with variable rotate amounts cannot be efficiently synthesized for non-power-of-2 widths of the rotated value. Because of that, the rotate operations are only provided for constant rotate amounts, specified as Python :py:class:`int`\ s.
The following table lists the bitwise and shift operations provided by nMigen: The following table lists the bitwise and shift operations provided by Amaranth:
===================== ========================================== ====== ===================== ========================================== ======
Operation Description Notes Operation Description Notes
@ -497,14 +497,14 @@ Operation Description Notes
.. note:: .. note::
Because nMigen ensures that the width of a variable left shift expression is wide enough to represent any possible result, variable left shift by a wide amount produces exponentially wider intermediate values, stressing the synthesis tools: Because Amaranth ensures that the width of a variable left shift expression is wide enough to represent any possible result, variable left shift by a wide amount produces exponentially wider intermediate values, stressing the synthesis tools:
.. doctest:: .. doctest::
>>> (1 << C(0, 32)).shape() >>> (1 << C(0, 32)).shape()
unsigned(4294967296) unsigned(4294967296)
Although nMigen will detect and reject expressions wide enough to break other tools, it is a good practice to explicitly limit the width of a shift amount in a variable left shift. Although Amaranth will detect and reject expressions wide enough to break other tools, it is a good practice to explicitly limit the width of a shift amount in a variable left shift.
.. _lang-reduceops: .. _lang-reduceops:
@ -516,7 +516,7 @@ Bitwise reduction operations on integers are not provided by Python, but are ver
The result of a reduction is a 1-bit unsigned value. The result of a reduction is a 1-bit unsigned value.
The following table lists the reduction operations provided by nMigen: The following table lists the reduction operations provided by Amaranth:
============ ============================================= ====== ============ ============================================= ======
Operation Description Notes Operation Description Notes
@ -536,12 +536,12 @@ Operation Description Notes
Logical operators Logical operators
----------------- -----------------
Unlike the arithmetic or bitwise operators, it is not possible to change the behavior of the Python logical operators ``not``, ``and``, and ``or``. Due to that, logical expressions in nMigen are written using bitwise operations on boolean (1-bit unsigned) values, with explicit boolean conversions added where necessary. Unlike the arithmetic or bitwise operators, it is not possible to change the behavior of the Python logical operators ``not``, ``and``, and ``or``. Due to that, logical expressions in Amaranth are written using bitwise operations on boolean (1-bit unsigned) values, with explicit boolean conversions added where necessary.
The following table lists the Python logical expressions and their nMigen equivalents: The following table lists the Python logical expressions and their Amaranth equivalents:
================= ==================================== ================= ====================================
Python expression nMigen expression (any operands) Python expression Amaranth expression (any operands)
================= ==================================== ================= ====================================
``not a`` ``~(a).bool()`` ``not a`` ``~(a).bool()``
``a and b`` ``(a).bool() & (b).bool()`` ``a and b`` ``(a).bool() & (b).bool()``
@ -551,7 +551,7 @@ Python expression nMigen expression (any operands)
When the operands are known to be boolean values, such as comparisons, reductions, or boolean signals, the ``.bool()`` conversion may be omitted for clarity: When the operands are known to be boolean values, such as comparisons, reductions, or boolean signals, the ``.bool()`` conversion may be omitted for clarity:
================= ==================================== ================= ====================================
Python expression nMigen expression (boolean operands) Python expression Amaranth expression (boolean operands)
================= ==================================== ================= ====================================
``not p`` ``~(p)`` ``not p`` ``~(p)``
``p and q`` ``(p) & (q)`` ``p and q`` ``(p) & (q)``
@ -562,9 +562,9 @@ Python expression nMigen expression (boolean operands)
.. warning:: .. warning::
Because of Python :ref:`operator precedence <python:operator-summary>`, logical operators bind less tightly than comparison operators whereas bitwise operators bind more tightly than comparison operators. As a result, all logical expressions in nMigen **must** have parenthesized operands. Because of Python :ref:`operator precedence <python:operator-summary>`, logical operators bind less tightly than comparison operators whereas bitwise operators bind more tightly than comparison operators. As a result, all logical expressions in Amaranth **must** have parenthesized operands.
Omitting parentheses around operands in an nMigen a logical expression is likely to introduce a subtle bug: Omitting parentheses around operands in an Amaranth a logical expression is likely to introduce a subtle bug:
.. doctest:: .. doctest::
@ -581,7 +581,7 @@ Python expression nMigen expression (boolean operands)
.. warning:: .. warning::
When applied to nMigen boolean values, the ``~`` operator computes negation, and when applied to Python boolean values, the ``not`` operator also computes negation. However, the ``~`` operator applied to Python boolean values produces an unexpected result: When applied to Amaranth boolean values, the ``~`` operator computes negation, and when applied to Python boolean values, the ``not`` operator also computes negation. However, the ``~`` operator applied to Python boolean values produces an unexpected result:
.. doctest:: .. doctest::
@ -590,7 +590,7 @@ Python expression nMigen expression (boolean operands)
>>> ~True >>> ~True
-2 -2
Because of this, Python booleans used in nMigen logical expressions **must** be negated with the ``not`` operator, not the ``~`` operator. Negating a Python boolean with the ``~`` operator in an nMigen logical expression is likely to introduce a subtle bug: Because of this, Python booleans used in Amaranth logical expressions **must** be negated with the ``not`` operator, not the ``~`` operator. Negating a Python boolean with the ``~`` operator in an Amaranth logical expression is likely to introduce a subtle bug:
.. doctest:: .. doctest::
@ -601,7 +601,7 @@ Python expression nMigen expression (boolean operands)
>>> ~use_stb | stb # WRONG! MSB of 2-bit wide OR expression is always 1 >>> ~use_stb | stb # WRONG! MSB of 2-bit wide OR expression is always 1
(| (const 2'sd-2) (sig stb)) (| (const 2'sd-2) (sig stb))
nMigen automatically detects some cases of misuse of ``~`` and emits a detailed diagnostic message. Amaranth automatically detects some cases of misuse of ``~`` and emits a detailed diagnostic message.
.. TODO: this isn't quite reliable, #380 .. TODO: this isn't quite reliable, #380
@ -611,13 +611,13 @@ Python expression nMigen expression (boolean operands)
Bit sequence operators Bit sequence operators
---------------------- ----------------------
Apart from acting as numbers, nMigen values can also be treated as bit :ref:`sequences <python:typesseq>`, supporting slicing, concatenation, replication, and other sequence operations. Since some of the operators Python defines for sequences clash with the operators it defines for numbers, nMigen gives these operators a different name. Except for the names, nMigen values follow Python sequence semantics, with the least significant bit at index 0. Apart from acting as numbers, Amaranth values can also be treated as bit :ref:`sequences <python:typesseq>`, supporting slicing, concatenation, replication, and other sequence operations. Since some of the operators Python defines for sequences clash with the operators it defines for numbers, Amaranth gives these operators a different name. Except for the names, Amaranth values follow Python sequence semantics, with the least significant bit at index 0.
Because every nMigen value has a single fixed width, bit slicing and replication operations require the subscripts and count to be constant, specified as Python :py:class:`int`\ s. It is often useful to slice a value with a constant width and variable offset, but this cannot be expressed with the Python slice notation. To solve this problem, nMigen provides additional *part select* operations with the necessary semantics. Because every Amaranth value has a single fixed width, bit slicing and replication operations require the subscripts and count to be constant, specified as Python :py:class:`int`\ s. It is often useful to slice a value with a constant width and variable offset, but this cannot be expressed with the Python slice notation. To solve this problem, Amaranth provides additional *part select* operations with the necessary semantics.
The result of any bit sequence operation is an unsigned value. The result of any bit sequence operation is an unsigned value.
The following table lists the bit sequence operations provided by nMigen: The following table lists the bit sequence operations provided by Amaranth:
======================= ================================================ ====== ======================= ================================================ ======
Operation Description Notes Operation Description Notes
@ -631,14 +631,14 @@ Operation Description Notes
``Repl(a, n)`` replication ``Repl(a, n)`` replication
======================= ================================================ ====== ======================= ================================================ ======
.. [#opS1] Words "length" and "width" have the same meaning when talking about nMigen values. Conventionally, "width" is used. .. [#opS1] Words "length" and "width" have the same meaning when talking about Amaranth values. Conventionally, "width" is used.
.. [#opS2] All variations of the Python slice notation are supported, including "extended slicing". E.g. all of ``a[0]``, ``a[1:9]``, ``a[2:]``, ``a[:-2]``, ``a[::-1]``, ``a[0:8:2]`` select bits in the same way as other Python sequence types select their elements. .. [#opS2] All variations of the Python slice notation are supported, including "extended slicing". E.g. all of ``a[0]``, ``a[1:9]``, ``a[2:]``, ``a[:-2]``, ``a[::-1]``, ``a[0:8:2]`` select bits in the same way as other Python sequence types select their elements.
.. [#opS3] In the concatenated value, ``a`` occupies the least significant bits, and ``b`` the most significant bits. .. [#opS3] In the concatenated value, ``a`` occupies the least significant bits, and ``b`` the most significant bits.
For the operators introduced by nMigen, the following table explains them in terms of Python code operating on tuples of bits rather than nMigen values: For the operators introduced by Amaranth, the following table explains them in terms of Python code operating on tuples of bits rather than Amaranth values:
======================= ====================== ======================= ======================
nMigen operation Equivalent Python code Amaranth operation Equivalent Python code
======================= ====================== ======================= ======================
``Cat(a, b)`` ``a + b`` ``Cat(a, b)`` ``a + b``
``Repl(a, n)`` ``a * n`` ``Repl(a, n)`` ``a * n``
@ -654,7 +654,7 @@ nMigen operation Equivalent Python code
.. note:: .. note::
Could nMigen have used a different indexing or iteration order for values? Yes, but it would be necessary to either place the most significant bit at index 0, or deliberately break the Python sequence type interface. Both of these options would cause more issues than using different iteration orders for numeric and sequence operations. Could Amaranth have used a different indexing or iteration order for values? Yes, but it would be necessary to either place the most significant bit at index 0, or deliberately break the Python sequence type interface. Both of these options would cause more issues than using different iteration orders for numeric and sequence operations.
.. _lang-convops: .. _lang-convops:
@ -664,7 +664,7 @@ Conversion operators
The ``.as_signed()`` and ``.as_unsigned()`` conversion operators reinterpret the bits of a value with the requested signedness. This is useful when the same value is sometimes treated as signed and sometimes as unsigned, or when a signed value is constructed using slices or concatenations. For example, ``(pc + imm[:7].as_signed()).as_unsigned()`` sign-extends the 7 least significant bits of ``imm`` to the width of ``pc``, performs the addition, and produces an unsigned result. The ``.as_signed()`` and ``.as_unsigned()`` conversion operators reinterpret the bits of a value with the requested signedness. This is useful when the same value is sometimes treated as signed and sometimes as unsigned, or when a signed value is constructed using slices or concatenations. For example, ``(pc + imm[:7].as_signed()).as_unsigned()`` sign-extends the 7 least significant bits of ``imm`` to the width of ``pc``, performs the addition, and produces an unsigned result.
.. TODO: more general shape conversion? https://github.com/nmigen/nmigen/issues/381 .. TODO: more general shape conversion? https://github.com/amaranth-lang/amaranth/issues/381
.. _lang-muxop: .. _lang-muxop:
@ -680,12 +680,12 @@ The ``Mux(sel, val1, val0)`` choice expression (similar to the :ref:`conditional
Modules Modules
======= =======
A *module* is a unit of the nMigen design hierarchy: the smallest collection of logic that can be independently simulated, synthesized, or otherwise processed. Modules associate signals with :ref:`control domains <lang-domains>`, provide :ref:`control structures <lang-control>`, manage clock domains, and aggregate submodules. A *module* is a unit of the Amaranth design hierarchy: the smallest collection of logic that can be independently simulated, synthesized, or otherwise processed. Modules associate signals with :ref:`control domains <lang-domains>`, provide :ref:`control structures <lang-control>`, manage clock domains, and aggregate submodules.
.. TODO: link to clock domains .. TODO: link to clock domains
.. TODO: link to submodules .. TODO: link to submodules
Every nMigen design starts with a fresh module: Every Amaranth design starts with a fresh module:
.. doctest:: .. doctest::
@ -721,7 +721,7 @@ Assigning to signals
>>> s.eq(1) >>> s.eq(1)
(eq (sig s) (const 1'd1)) (eq (sig s) (const 1'd1))
Similar to :ref:`how nMigen operators work <lang-abstractexpr>`, an nMigen assignment is an ordinary Python object used to describe a part of a circuit. An assignment does not have any effect on the signal it changes until it is added to a control domain in a module. Once added, it introduces logic into the circuit generated from that module. Similar to :ref:`how Amaranth operators work <lang-abstractexpr>`, an Amaranth assignment is an ordinary Python object used to describe a part of a circuit. An assignment does not have any effect on the signal it changes until it is added to a control domain in a module. Once added, it introduces logic into the circuit generated from that module.
.. _lang-assignlhs: .. _lang-assignlhs:
@ -783,11 +783,11 @@ Every signal included in the target of an assignment becomes a part of the domai
>>> m.d.sync += d.eq(0) >>> m.d.sync += d.eq(0)
Traceback (most recent call last): Traceback (most recent call last):
... ...
nmigen.hdl.dsl.SyntaxError: Driver-driver conflict: trying to drive (sig d) from d.sync, but it is already driven from d.comb amaranth.hdl.dsl.SyntaxError: Driver-driver conflict: trying to drive (sig d) from d.sync, but it is already driven from d.comb
.. note:: .. note::
Clearly, nMigen code that drives a single bit of a signal from two different domains does not describe a meaningful circuit. However, driving two different bits of a signal from two different domains does not inherently cause such a conflict. Would nMigen accept the following code? Clearly, Amaranth code that drives a single bit of a signal from two different domains does not describe a meaningful circuit. However, driving two different bits of a signal from two different domains does not inherently cause such a conflict. Would Amaranth accept the following code?
.. testcode:: .. testcode::
@ -844,7 +844,7 @@ Multiple assignments to the same signal bits are more useful when combined with
Control structures Control structures
------------------ ------------------
Although it is possible to write any decision tree as a combination of :ref:`assignments <lang-assigns>` and :ref:`choice expressions <lang-muxop>`, nMigen provides *control structures* tailored for this task: If, Switch, and FSM. The syntax of all control structures is based on :ref:`context managers <python:context-managers>` and uses ``with`` blocks, for example: Although it is possible to write any decision tree as a combination of :ref:`assignments <lang-assigns>` and :ref:`choice expressions <lang-muxop>`, Amaranth provides *control structures* tailored for this task: If, Switch, and FSM. The syntax of all control structures is based on :ref:`context managers <python:context-managers>` and uses ``with`` blocks, for example:
.. TODO: link to relevant subsections .. TODO: link to relevant subsections
@ -856,14 +856,14 @@ Although it is possible to write any decision tree as a combination of :ref:`ass
with m.Else(): with m.Else():
m.d.sync += timer.eq(timer - 1) m.d.sync += timer.eq(timer - 1)
While some nMigen control structures are superficially similar to imperative control flow statements (such as Python's ``if``), their function---together with :ref:`expressions <lang-abstractexpr>` and :ref:`assignments <lang-assigns>`---is to describe circuits. The code above is equivalent to: While some Amaranth control structures are superficially similar to imperative control flow statements (such as Python's ``if``), their function---together with :ref:`expressions <lang-abstractexpr>` and :ref:`assignments <lang-assigns>`---is to describe circuits. The code above is equivalent to:
.. testcode:: .. testcode::
timer = Signal(8) timer = Signal(8)
m.d.sync += timer.eq(Mux(timer == 0, 10, timer - 1)) m.d.sync += timer.eq(Mux(timer == 0, 10, timer - 1))
Because all branches of a decision tree affect the generated circuit, all of the Python code inside nMigen control structures is always evaluated in the order in which it appears in the program. This can be observed through Python code with side effects, such as ``print()``: Because all branches of a decision tree affect the generated circuit, all of the Python code inside Amaranth control structures is always evaluated in the order in which it appears in the program. This can be observed through Python code with side effects, such as ``print()``:
.. testcode:: .. testcode::
@ -886,7 +886,7 @@ Because all branches of a decision tree affect the generated circuit, all of the
Active and inactive assignments Active and inactive assignments
------------------------------- -------------------------------
An assignment added inside an nMigen control structure, i.e. ``with m.<...>:`` block, is *active* if the condition of the control structure is satisfied, and *inactive* otherwise. For any given set of conditions, the final value of every signal assigned in a module is the same as if the inactive assignments were removed and the active assignments were performed unconditionally, taking into account the :ref:`assignment order <lang-assignorder>`. An assignment added inside an Amaranth control structure, i.e. ``with m.<...>:`` block, is *active* if the condition of the control structure is satisfied, and *inactive* otherwise. For any given set of conditions, the final value of every signal assigned in a module is the same as if the inactive assignments were removed and the active assignments were performed unconditionally, taking into account the :ref:`assignment order <lang-assignorder>`.
For example, there are two possible cases in the circuit generated from the following code: For example, there are two possible cases in the circuit generated from the following code:
@ -945,15 +945,15 @@ Consider the following code:
Whenever the signals ``en`` or ``b`` change, the signal ``a`` changes as well. If ``en`` is false, the final value of ``a`` is its initial value, ``1``. If ``en`` is true, the final value of ``a`` is equal to ``b + 1``. Whenever the signals ``en`` or ``b`` change, the signal ``a`` changes as well. If ``en`` is false, the final value of ``a`` is its initial value, ``1``. If ``en`` is true, the final value of ``a`` is equal to ``b + 1``.
A combinatorial signal that is computed directly or indirectly based on its own value is a part of a *combinatorial feedback loop*, sometimes shortened to just *feedback loop*. Combinatorial feedback loops can be stable (i.e. implement a constant driver or a transparent latch), or unstable (i.e. implement a ring oscillator). nMigen prohibits using assignments to describe any kind of a combinatorial feedback loop, including transparent latches. A combinatorial signal that is computed directly or indirectly based on its own value is a part of a *combinatorial feedback loop*, sometimes shortened to just *feedback loop*. Combinatorial feedback loops can be stable (i.e. implement a constant driver or a transparent latch), or unstable (i.e. implement a ring oscillator). Amaranth prohibits using assignments to describe any kind of a combinatorial feedback loop, including transparent latches.
.. warning:: .. warning::
The current version of nMigen does not detect combinatorial feedback loops, but processes the design under the assumption that there aren't any. If the design does in fact contain a combinatorial feedback loop, it will likely be **silently miscompiled**, though some cases will be detected during synthesis or place & route. The current version of Amaranth does not detect combinatorial feedback loops, but processes the design under the assumption that there aren't any. If the design does in fact contain a combinatorial feedback loop, it will likely be **silently miscompiled**, though some cases will be detected during synthesis or place & route.
This hazard will be eliminated in the future. This hazard will be eliminated in the future.
.. TODO: fix this, either as a part of https://github.com/nmigen/nmigen/issues/6 or on its own .. TODO: fix this, either as a part of https://github.com/amaranth-lang/amaranth/issues/6 or on its own
.. note:: .. note::

View file

@ -1,7 +1,7 @@
Getting started Getting started
############### ###############
This section demonstrates the basic nMigen workflow to provide a cursory overview of the language and the toolchain. See the :doc:`tutorial <tutorial>` for a step-by-step introduction to the language, and the :doc:`language guide <lang>` for a detailed explanation of every language construct. This section demonstrates the basic Amaranth workflow to provide a cursory overview of the language and the toolchain. See the :doc:`tutorial <tutorial>` for a step-by-step introduction to the language, and the :doc:`language guide <lang>` for a detailed explanation of every language construct.
.. TODO: add link to build system doc .. TODO: add link to build system doc
.. TODO: add link to more complex examples? .. TODO: add link to more complex examples?
@ -20,14 +20,14 @@ As a first example, consider a counter with a fixed limit, enable, and overflow.
Implementing a counter Implementing a counter
---------------------- ----------------------
A 16-bit up counter with enable input, overflow output, and a limit fixed at design time can be implemented in nMigen as follows: A 16-bit up counter with enable input, overflow output, and a limit fixed at design time can be implemented in Amaranth as follows:
.. literalinclude:: _code/up_counter.py .. literalinclude:: _code/up_counter.py
:linenos: :linenos:
:lineno-match: :lineno-match:
:end-before: # --- TEST --- :end-before: # --- TEST ---
The reusable building block of nMigen designs is an ``Elaboratable``: a Python class that includes HDL signals (``en`` and ``ovf``, in this case) as a part of its interface, and provides the ``elaborate`` method that defines its behavior. The reusable building block of Amaranth designs is an ``Elaboratable``: a Python class that includes HDL signals (``en`` and ``ovf``, in this case) as a part of its interface, and provides the ``elaborate`` method that defines its behavior.
.. TODO: link to Elaboratable reference .. TODO: link to Elaboratable reference
@ -60,7 +60,7 @@ When run, the test bench finishes successfully, since all of the assertions hold
Converting a counter Converting a counter
-------------------- --------------------
Although some nMigen workflows do not include Verilog at all, it is still the de facto standard for HDL interoperability. Any nMigen design can be converted to synthesizable Verilog using the corresponding backend: Although some Amaranth workflows do not include Verilog at all, it is still the de facto standard for HDL interoperability. Any Amaranth design can be converted to synthesizable Verilog using the corresponding backend:
.. literalinclude:: _code/up_counter.py .. literalinclude:: _code/up_counter.py
:linenos: :linenos:
@ -75,7 +75,7 @@ The signals that will be connected to the ports of the top-level Verilog module
:language: verilog :language: verilog
:linenos: :linenos:
To aid debugging, the generated Verilog code has the same general structure as the nMigen source code (although more verbose), and contains extensive source location information. To aid debugging, the generated Verilog code has the same general structure as the Amaranth source code (although more verbose), and contains extensive source location information.
.. note:: .. note::
@ -85,14 +85,14 @@ To aid debugging, the generated Verilog code has the same general structure as t
A blinking LED A blinking LED
============== ==============
Although nMigen works well as a standalone HDL, it also includes a build system that integrates with FPGA toolchains, and many board definition files for common developer boards that include pinouts and programming adapter invocations. The following code will blink a LED with a frequency of 1 Hz on any board that has a LED and an oscillator: Although Amaranth works well as a standalone HDL, it also includes a build system that integrates with FPGA toolchains, and many board definition files for common developer boards that include pinouts and programming adapter invocations. The following code will blink a LED with a frequency of 1 Hz on any board that has a LED and an oscillator:
.. literalinclude:: _code/led_blinker.py .. literalinclude:: _code/led_blinker.py
:linenos: :linenos:
:lineno-match: :lineno-match:
:end-before: # --- BUILD --- :end-before: # --- BUILD ---
The ``LEDBlinker`` module will use the first LED available on the board, and derive the clock divisor from the oscillator frequency specified in the clock constraint. It can be used, for example, with the `Lattice iCEStick evaluation board <https://www.latticesemi.com/icestick>`_, one of the many boards already supported by nMigen: The ``LEDBlinker`` module will use the first LED available on the board, and derive the clock divisor from the oscillator frequency specified in the clock constraint. It can be used, for example, with the `Lattice iCEStick evaluation board <https://www.latticesemi.com/icestick>`_, one of the many boards already supported by Amaranth:
.. TODO: link to list of supported boards .. TODO: link to list of supported boards
@ -105,7 +105,7 @@ The ``LEDBlinker`` module will use the first LED available on the board, and der
:lineno-match: :lineno-match:
:start-after: # --- BUILD --- :start-after: # --- BUILD ---
With only a single line of code, the design is synthesized, placed, routed, and programmed to the on-board Flash memory. Although not all applications will use the nMigen build system, the designs that choose it can benefit from the "turnkey" built-in workflows; if necessary, the built-in workflows can be customized to include user-specified options, commands, and files. With only a single line of code, the design is synthesized, placed, routed, and programmed to the on-board Flash memory. Although not all applications will use the Amaranth build system, the designs that choose it can benefit from the "turnkey" built-in workflows; if necessary, the built-in workflows can be customized to include user-specified options, commands, and files.
.. TODO: link to build system reference .. TODO: link to build system reference
@ -115,6 +115,6 @@ With only a single line of code, the design is synthesized, placed, routed, and
.. code-block:: shell .. code-block:: shell
$ python3 -m nmigen_boards.icestick $ python3 -m amaranth_boards.icestick
This command will build and program a test bitstream similar to the example above. This command will build and program a test bitstream similar to the example above.

View file

@ -3,7 +3,7 @@ Tutorial
.. todo:: .. todo::
The official tutorial is still being written. Until it's ready, consider following one of the tutorials written by the nMigen community: The official tutorial is still being written. Until it's ready, consider following one of the tutorials written by the Amaranth community:
* `Learning FPGA Design with nMigen <https://vivonomicon.com/2020/04/14/learning-fpga-design-with-nmigen/>`_ by Vivonomicon; * `Learning FPGA Design with nMigen <https://vivonomicon.com/2020/04/14/learning-fpga-design-with-nmigen/>`_ by Vivonomicon;
* `nMigen Step by Step Tutorial <http://blog.lambdaconcept.com/doku.php?id=nmigen:tutorial>`_ by LambdaConcept; * `nMigen Step by Step Tutorial <http://blog.lambdaconcept.com/doku.php?id=nmigen:tutorial>`_ by LambdaConcept;

View file

@ -1,5 +1,5 @@
from nmigen import * from amaranth import *
from nmigen.cli import main from amaranth.cli import main
class ALU(Elaboratable): class ALU(Elaboratable):

View file

@ -1,5 +1,5 @@
from nmigen import * from amaranth import *
from nmigen.cli import main from amaranth.cli import main
class Adder(Elaboratable): class Adder(Elaboratable):

View file

@ -1,5 +1,5 @@
from nmigen import * from amaranth import *
from nmigen.cli import main from amaranth.cli import main
class ClockDivisor(Elaboratable): class ClockDivisor(Elaboratable):

View file

@ -1,6 +1,6 @@
from nmigen import * from amaranth import *
from nmigen.lib.cdc import FFSynchronizer from amaranth.lib.cdc import FFSynchronizer
from nmigen.cli import main from amaranth.cli import main
i, o = Signal(name="i"), Signal(name="o") i, o = Signal(name="i"), Signal(name="o")

View file

@ -1,5 +1,5 @@
from nmigen import * from amaranth import *
from nmigen.cli import main from amaranth.cli import main
class Counter(Elaboratable): class Counter(Elaboratable):

View file

@ -1,6 +1,6 @@
from nmigen import * from amaranth import *
from nmigen.sim import * from amaranth.sim import *
from nmigen.back import verilog from amaranth.back import verilog
class Counter(Elaboratable): class Counter(Elaboratable):

View file

@ -1,5 +1,5 @@
from nmigen import * from amaranth import *
from nmigen.cli import main from amaranth.cli import main
class UARTReceiver(Elaboratable): class UARTReceiver(Elaboratable):

View file

@ -1,5 +1,5 @@
from nmigen import * from amaranth import *
from nmigen.cli import main from amaranth.cli import main
class GPIO(Elaboratable): class GPIO(Elaboratable):

View file

@ -1,5 +1,5 @@
from nmigen import * from amaranth import *
from nmigen.cli import main from amaranth.cli import main
class System(Elaboratable): class System(Elaboratable):

Some files were not shown because too many files have changed in this diff Show more