Unify Xilinx platforms into a single class, support more devices

This merges existing code, and also adds support for:

- Virtex, Virtex E (also known as Spartan 2, Spartan 2E)
- Virtex 2, Virtex 2 Pro
- Spartan 3, Spartan 3E (in addition to existing Spartan 3A, Spartan 3A
  DSP support)
- Virtex 4
- Virtex 5
- Virtex 6
- ISE synthesis for Series 7

Fixes #552.
This commit is contained in:
Marcelina Kościelnicka 2020-12-16 16:35:57 +01:00 committed by whitequark
parent da8a492be7
commit bdbe8bff27
4 changed files with 1067 additions and 1512 deletions

1060
nmigen/vendor/xilinx.py Normal file

File diff suppressed because it is too large Load diff

View file

@ -1,621 +1,5 @@
from abc import abstractproperty
from ..hdl import *
from ..lib.cdc import ResetSynchronizer
from ..build import *
from .xilinx import XilinxPlatform
__all__ = ["Xilinx7SeriesPlatform"]
class Xilinx7SeriesPlatform(TemplatedPlatform):
"""
Vivado toolchain
----------------
Required tools:
* ``vivado``
The environment is populated by running the script specified in the environment variable
``NMIGEN_ENV_Vivado``, if present.
Available overrides:
* ``script_after_read``: inserts commands after ``read_xdc`` in Tcl script.
* ``script_after_synth``: inserts commands after ``synth_design`` in Tcl script.
* ``script_after_place``: inserts commands after ``place_design`` in Tcl script.
* ``script_after_route``: inserts commands after ``route_design`` in Tcl script.
* ``script_before_bitstream``: inserts commands before ``write_bitstream`` in Tcl script.
* ``script_after_bitstream``: inserts commands after ``write_bitstream`` in Tcl script.
* ``add_constraints``: inserts commands in XDC file.
* ``vivado_opts``: adds extra options for ``vivado``.
Build products:
* ``{{name}}.log``: Vivado log.
* ``{{name}}_timing_synth.rpt``: Vivado report.
* ``{{name}}_utilization_hierarchical_synth.rpt``: Vivado report.
* ``{{name}}_utilization_synth.rpt``: Vivado report.
* ``{{name}}_utilization_hierarchical_place.rpt``: Vivado report.
* ``{{name}}_utilization_place.rpt``: Vivado report.
* ``{{name}}_io.rpt``: Vivado report.
* ``{{name}}_control_sets.rpt``: Vivado report.
* ``{{name}}_clock_utilization.rpt``: Vivado report.
* ``{{name}}_route_status.rpt``: Vivado report.
* ``{{name}}_drc.rpt``: Vivado report.
* ``{{name}}_methodology.rpt``: Vivado report.
* ``{{name}}_timing.rpt``: Vivado report.
* ``{{name}}_power.rpt``: Vivado report.
* ``{{name}}_route.dcp``: Vivado design checkpoint.
* ``{{name}}.bit``: binary bitstream with metadata.
* ``{{name}}.bin``: binary bitstream.
Symbiflow toolchain
-------------------
Required tools:
* ``symbiflow_synth``
* ``symbiflow_pack``
* ``symbiflow_place``
* ``symbiflow_route``
* ``symbiflow_write_fasm``
* ``symbiflow_write_bitstream``
The environment is populated by running the script specified in the environment variable
``NMIGEN_ENV_Symbiflow``, if present.
Available overrides:
* ``add_constraints``: inserts commands in XDC file.
"""
toolchain = None # selected when creating platform
device = abstractproperty()
package = abstractproperty()
speed = abstractproperty()
@property
def _part(self):
return "{}{}-{}".format(self.device, self.package, self.speed)
# Vivado templates
_vivado_required_tools = ["vivado"]
_vivado_file_templates = {
**TemplatedPlatform.build_script_templates,
"build_{{name}}.sh": r"""
# {{autogenerated}}
set -e{{verbose("x")}}
if [ -z "$BASH" ] ; then exec /bin/bash "$0" "$@"; fi
[ -n "${{platform._toolchain_env_var}}" ] && . "${{platform._toolchain_env_var}}"
{{emit_commands("sh")}}
""",
"{{name}}.v": r"""
/* {{autogenerated}} */
{{emit_verilog()}}
""",
"{{name}}.debug.v": r"""
/* {{autogenerated}} */
{{emit_debug_verilog()}}
""",
"{{name}}.tcl": r"""
# {{autogenerated}}
create_project -force -name {{name}} -part {{platform._part}}
{% for file in platform.iter_files(".v", ".sv", ".vhd", ".vhdl") -%}
add_files {{file|tcl_escape}}
{% endfor %}
add_files {{name}}.v
read_xdc {{name}}.xdc
{% for file in platform.iter_files(".xdc") -%}
read_xdc {{file|tcl_escape}}
{% endfor %}
{{get_override("script_after_read")|default("# (script_after_read placeholder)")}}
synth_design -top {{name}}
foreach cell [get_cells -quiet -hier -filter {nmigen.vivado.false_path == "TRUE"}] {
set_false_path -to $cell
}
foreach cell [get_cells -quiet -hier -filter {nmigen.vivado.max_delay != ""}] {
set clock [get_clocks -of_objects \
[all_fanin -flat -startpoints_only [get_pin $cell/D]]]
if {[llength $clock] != 0} {
set_max_delay -datapath_only -from $clock \
-to [get_cells $cell] [get_property nmigen.vivado.max_delay $cell]
}
}
{{get_override("script_after_synth")|default("# (script_after_synth placeholder)")}}
report_timing_summary -file {{name}}_timing_synth.rpt
report_utilization -hierarchical -file {{name}}_utilization_hierarchical_synth.rpt
report_utilization -file {{name}}_utilization_synth.rpt
opt_design
place_design
{{get_override("script_after_place")|default("# (script_after_place placeholder)")}}
report_utilization -hierarchical -file {{name}}_utilization_hierarchical_place.rpt
report_utilization -file {{name}}_utilization_place.rpt
report_io -file {{name}}_io.rpt
report_control_sets -verbose -file {{name}}_control_sets.rpt
report_clock_utilization -file {{name}}_clock_utilization.rpt
route_design
{{get_override("script_after_route")|default("# (script_after_route placeholder)")}}
phys_opt_design
report_timing_summary -no_header -no_detailed_paths
write_checkpoint -force {{name}}_route.dcp
report_route_status -file {{name}}_route_status.rpt
report_drc -file {{name}}_drc.rpt
report_methodology -file {{name}}_methodology.rpt
report_timing_summary -datasheet -max_paths 10 -file {{name}}_timing.rpt
report_power -file {{name}}_power.rpt
{{get_override("script_before_bitstream")|default("# (script_before_bitstream placeholder)")}}
write_bitstream -force -bin_file {{name}}.bit
{{get_override("script_after_bitstream")|default("# (script_after_bitstream placeholder)")}}
quit
""",
"{{name}}.xdc": r"""
# {{autogenerated}}
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
set_property LOC {{pin_name}} [get_ports {{port_name|tcl_escape}}]
{% for attr_name, attr_value in attrs.items() -%}
set_property {{attr_name}} {{attr_value|tcl_escape}} [get_ports {{port_name|tcl_escape}}]
{% endfor %}
{% endfor %}
{% for net_signal, port_signal, frequency in platform.iter_clock_constraints() -%}
{% if port_signal is not none -%}
create_clock -name {{port_signal.name|ascii_escape}} -period {{1000000000/frequency}} [get_ports {{port_signal.name|tcl_escape}}]
{% else -%}
create_clock -name {{net_signal.name|ascii_escape}} -period {{1000000000/frequency}} [get_nets {{net_signal|hierarchy("/")|tcl_escape}}]
{% endif %}
{% endfor %}
{{get_override("add_constraints")|default("# (add_constraints placeholder)")}}
"""
}
_vivado_command_templates = [
r"""
{{invoke_tool("vivado")}}
{{verbose("-verbose")}}
{{get_override("vivado_opts")|options}}
-mode batch
-log {{name}}.log
-source {{name}}.tcl
"""
]
# Symbiflow templates
_symbiflow_part_map = {
"xc7a35ticsg324-1L": "xc7a35tcsg324-1", # Arty-A7
}
_symbiflow_required_tools = [
"symbiflow_synth",
"symbiflow_pack",
"symbiflow_place",
"symbiflow_route",
"symbiflow_write_fasm",
"symbiflow_write_bitstream"
]
_symbiflow_file_templates = {
**TemplatedPlatform.build_script_templates,
"{{name}}.v": r"""
/* {{autogenerated}} */
{{emit_verilog()}}
""",
"{{name}}.debug.v": r"""
/* {{autogenerated}} */
{{emit_debug_verilog()}}
""",
"{{name}}.pcf": r"""
# {{autogenerated}}
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
set_io {{port_name}} {{pin_name}}
{% endfor %}
""",
"{{name}}.xdc": r"""
# {{autogenerated}}
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
{% for attr_name, attr_value in attrs.items() -%}
set_property {{attr_name}} {{attr_value}} [get_ports {{port_name|tcl_escape}} }]
{% endfor %}
{% endfor %}
{{get_override("add_constraints")|default("# (add_constraints placeholder)")}}
""",
"{{name}}.sdc": r"""
# {{autogenerated}}
{% for net_signal, port_signal, frequency in platform.iter_clock_constraints() -%}
{% if port_signal is none -%}
create_clock -period {{1000000000/frequency}} {{net_signal.name|ascii_escape}}
{% endif %}
{% endfor %}
"""
}
_symbiflow_command_templates = [
r"""
{{invoke_tool("symbiflow_synth")}}
-t {{name}}
-v {% for file in platform.iter_files(".v", ".sv", ".vhd", ".vhdl") -%} {{file}} {% endfor %} {{name}}.v
-p {{platform._symbiflow_part_map.get(platform._part, platform._part)}}
-x {{name}}.xdc
""",
r"""
{{invoke_tool("symbiflow_pack")}}
-e {{name}}.eblif
-P {{platform._symbiflow_part_map.get(platform._part, platform._part)}}
-s {{name}}.sdc
""",
r"""
{{invoke_tool("symbiflow_place")}}
-e {{name}}.eblif
-p {{name}}.pcf
-n {{name}}.net
-P {{platform._symbiflow_part_map.get(platform._part, platform._part)}}
-s {{name}}.sdc
""",
r"""
{{invoke_tool("symbiflow_route")}}
-e {{name}}.eblif
-P {{platform._symbiflow_part_map.get(platform._part, platform._part)}}
-s {{name}}.sdc
""",
r"""
{{invoke_tool("symbiflow_write_fasm")}}
-e {{name}}.eblif
-P {{platform._symbiflow_part_map.get(platform._part, platform._part)}}
""",
r"""
{{invoke_tool("symbiflow_write_bitstream")}}
-f {{name}}.fasm
-p {{platform._symbiflow_part_map.get(platform._part, platform._part)}}
-b {{name}}.bit
"""
]
# Common logic
def __init__(self, *, toolchain="Vivado"):
super().__init__()
assert toolchain in ("Vivado", "Symbiflow")
self.toolchain = toolchain
@property
def required_tools(self):
if self.toolchain == "Vivado":
return self._vivado_required_tools
if self.toolchain == "Symbiflow":
return self._symbiflow_required_tools
assert False
@property
def file_templates(self):
if self.toolchain == "Vivado":
return self._vivado_file_templates
if self.toolchain == "Symbiflow":
return self._symbiflow_file_templates
assert False
@property
def command_templates(self):
if self.toolchain == "Vivado":
return self._vivado_command_templates
if self.toolchain == "Symbiflow":
return self._symbiflow_command_templates
assert False
def create_missing_domain(self, name):
# Xilinx devices have a global write enable (GWE) signal that asserted during configuraiton
# and deasserted once it ends. Because it is an asynchronous signal (GWE is driven by logic
# syncronous to configuration clock, which is not used by most designs), even though it is
# a low-skew global network, its deassertion may violate a setup/hold constraint with
# relation to a user clock. The recommended solution is to use a BUFGCE driven by the EOS
# signal. For details, see:
# * https://www.xilinx.com/support/answers/44174.html
# * https://www.xilinx.com/support/documentation/white_papers/wp272.pdf
if name == "sync" and self.default_clk is not None:
clk_i = self.request(self.default_clk).i
if self.default_rst is not None:
rst_i = self.request(self.default_rst).i
m = Module()
if self.toolchain == "Vivado":
ready = Signal()
m.submodules += Instance("STARTUPE2", o_EOS=ready)
m.domains += ClockDomain("sync", reset_less=self.default_rst is None)
# Actually use BUFGCTRL configured as BUFGCE, since using BUFGCE causes
# sim/synth mismatches with Vivado 2019.2, and the suggested workaround
# (SIM_DEVICE parameter) breaks Vivado 2017.4.
m.submodules += Instance("BUFGCTRL",
p_SIM_DEVICE="7SERIES",
i_I0=clk_i, i_S0=C(1, 1), i_CE0=ready, i_IGNORE0=C(0, 1),
i_I1=C(1, 1), i_S1=C(0, 1), i_CE1=C(0, 1), i_IGNORE1=C(1, 1),
o_O=ClockSignal("sync")
)
elif self.toolchain == "Symbiflow":
cd_sync = ClockDomain("sync", reset_less=self.default_rst is None)
m.domains += cd_sync
m.submodules += Instance("BUFG", i_I=clk_i, o_O=cd_sync.clk)
self.add_clock_constraint(cd_sync.clk, self.default_clk_frequency)
else:
assert False
if self.default_rst is not None:
m.submodules.reset_sync = ResetSynchronizer(rst_i, domain="sync")
return m
def add_clock_constraint(self, clock, frequency):
super().add_clock_constraint(clock, frequency)
clock.attrs["keep"] = "TRUE"
def _get_xdr_buffer(self, m, pin, *, i_invert=False, o_invert=False):
def get_dff(clk, d, q):
# SDR I/O is performed by packing a flip-flop into the pad IOB.
for bit in range(len(q)):
m.submodules += Instance("FDCE",
a_IOB="TRUE",
i_C=clk,
i_CE=Const(1),
i_CLR=Const(0),
i_D=d[bit],
o_Q=q[bit]
)
def get_iddr(clk, d, q1, q2):
for bit in range(len(q1)):
m.submodules += Instance("IDDR",
p_DDR_CLK_EDGE="SAME_EDGE_PIPELINED",
p_SRTYPE="ASYNC",
p_INIT_Q1=0, p_INIT_Q2=0,
i_C=clk,
i_CE=Const(1),
i_S=Const(0), i_R=Const(0),
i_D=d[bit],
o_Q1=q1[bit], o_Q2=q2[bit]
)
def get_oddr(clk, d1, d2, q):
for bit in range(len(q)):
m.submodules += Instance("ODDR",
p_DDR_CLK_EDGE="SAME_EDGE",
p_SRTYPE="ASYNC",
p_INIT=0,
i_C=clk,
i_CE=Const(1),
i_S=Const(0), i_R=Const(0),
i_D1=d1[bit], i_D2=d2[bit],
o_Q=q[bit]
)
def get_ineg(y, invert):
if invert:
a = Signal.like(y, name_suffix="_n")
m.d.comb += y.eq(~a)
return a
else:
return y
def get_oneg(a, invert):
if invert:
y = Signal.like(a, name_suffix="_n")
m.d.comb += y.eq(~a)
return y
else:
return a
if "i" in pin.dir:
if pin.xdr < 2:
pin_i = get_ineg(pin.i, i_invert)
elif pin.xdr == 2:
pin_i0 = get_ineg(pin.i0, i_invert)
pin_i1 = get_ineg(pin.i1, i_invert)
if "o" in pin.dir:
if pin.xdr < 2:
pin_o = get_oneg(pin.o, o_invert)
elif pin.xdr == 2:
pin_o0 = get_oneg(pin.o0, o_invert)
pin_o1 = get_oneg(pin.o1, o_invert)
i = o = t = None
if "i" in pin.dir:
i = Signal(pin.width, name="{}_xdr_i".format(pin.name))
if "o" in pin.dir:
o = Signal(pin.width, name="{}_xdr_o".format(pin.name))
if pin.dir in ("oe", "io"):
t = Signal(1, name="{}_xdr_t".format(pin.name))
if pin.xdr == 0:
if "i" in pin.dir:
i = pin_i
if "o" in pin.dir:
o = pin_o
if pin.dir in ("oe", "io"):
t = ~pin.oe
elif pin.xdr == 1:
if "i" in pin.dir:
get_dff(pin.i_clk, i, pin_i)
if "o" in pin.dir:
get_dff(pin.o_clk, pin_o, o)
if pin.dir in ("oe", "io"):
get_dff(pin.o_clk, ~pin.oe, t)
elif pin.xdr == 2:
if "i" in pin.dir:
get_iddr(pin.i_clk, i, pin_i0, pin_i1)
if "o" in pin.dir:
get_oddr(pin.o_clk, pin_o0, pin_o1, o)
if pin.dir in ("oe", "io"):
get_dff(pin.o_clk, ~pin.oe, t)
else:
assert False
return (i, o, t)
def get_input(self, pin, port, attrs, invert):
self._check_feature("single-ended input", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IBUF",
i_I=port.io[bit],
o_O=i[bit]
)
return m
def get_output(self, pin, port, attrs, invert):
self._check_feature("single-ended output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
if self.toolchain == "Vivado":
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUF",
i_I=o[bit],
o_O=port.io[bit]
)
elif self.toolchain == "Symbiflow":
m.d.comb += port.eq(self._invert_if(invert, o))
else:
assert False
return m
def get_tristate(self, pin, port, attrs, invert):
if self.toolchain == "Symbiflow":
return super().get_tristate(pin, port, attrs, invert)
self._check_feature("single-ended tristate", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFT",
i_T=t,
i_I=o[bit],
o_O=port.io[bit]
)
return m
def get_input_output(self, pin, port, attrs, invert):
if self.toolchain == "Symbiflow":
return super().get_input_output(pin, port, attrs, invert)
self._check_feature("single-ended input/output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IOBUF",
i_T=t,
i_I=o[bit],
o_O=i[bit],
io_IO=port.io[bit]
)
return m
def get_diff_input(self, pin, port, attrs, invert):
if self.toolchain == "Symbiflow":
return super().get_diff_input(pin, port, attrs, invert)
self._check_feature("differential input", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IBUFDS",
i_I=port.p[bit], i_IB=port.n[bit],
o_O=i[bit]
)
return m
def get_diff_output(self, pin, port, attrs, invert):
if self.toolchain == "Symbiflow":
return super().get_diff_output(pin, port, attrs, invert)
self._check_feature("differential output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFDS",
i_I=o[bit],
o_O=port.p[bit], o_OB=port.n[bit]
)
return m
def get_diff_tristate(self, pin, port, attrs, invert):
if self.toolchain == "Symbiflow":
return super().get_diff_tristate(pin, port, attrs, invert)
self._check_feature("differential tristate", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFTDS",
i_T=t,
i_I=o[bit],
o_O=port.p[bit], o_OB=port.n[bit]
)
return m
def get_diff_input_output(self, pin, port, attrs, invert):
if self.toolchain == "Symbiflow":
return super().get_diff_input_output(pin, port, attrs, invert)
self._check_feature("differential input/output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IOBUFDS",
i_T=t,
i_I=o[bit],
o_O=i[bit],
io_IO=port.p[bit], io_IOB=port.n[bit]
)
return m
# The synchronizer implementations below apply two separate but related timing constraints.
#
# First, the ASYNC_REG attribute prevents inference of shift registers from synchronizer FFs,
# and constraints the FFs to be placed as close as possible, ideally in one CLB. This attribute
# only affects the synchronizer FFs themselves.
#
# Second, the nmigen.vivado.false_path or nmigen.vivado.max_delay attribute affects the path
# into the synchronizer. If maximum input delay is specified, a datapath-only maximum delay
# constraint is applied, limiting routing delay (and therefore skew) at the synchronizer input.
# Otherwise, a false path constraint is used to omit the input path from the timing analysis.
def get_ff_sync(self, ff_sync):
m = Module()
flops = [Signal(ff_sync.i.shape(), name="stage{}".format(index),
reset=ff_sync._reset, reset_less=ff_sync._reset_less,
attrs={"ASYNC_REG": "TRUE"})
for index in range(ff_sync._stages)]
if ff_sync._max_input_delay is None:
flops[0].attrs["nmigen.vivado.false_path"] = "TRUE"
else:
flops[0].attrs["nmigen.vivado.max_delay"] = str(ff_sync._max_input_delay * 1e9)
for i, o in zip((ff_sync.i, *flops), flops):
m.d[ff_sync._o_domain] += o.eq(i)
m.d.comb += ff_sync.o.eq(flops[-1])
return m
def get_async_ff_sync(self, async_ff_sync):
m = Module()
m.domains += ClockDomain("async_ff", async_reset=True, local=True)
flops = [Signal(1, name="stage{}".format(index), reset=1,
attrs={"ASYNC_REG": "TRUE"})
for index in range(async_ff_sync._stages)]
if async_ff_sync._max_input_delay is None:
flops[0].attrs["nmigen.vivado.false_path"] = "TRUE"
else:
flops[0].attrs["nmigen.vivado.max_delay"] = str(async_ff_sync._max_input_delay * 1e9)
for i, o in zip((0, *flops), flops):
m.d.async_ff += o.eq(i)
if async_ff_sync._edge == "pos":
m.d.comb += ResetSignal("async_ff").eq(async_ff_sync.i)
else:
m.d.comb += ResetSignal("async_ff").eq(~async_ff_sync.i)
m.d.comb += [
ClockSignal("async_ff").eq(ClockSignal(async_ff_sync._o_domain)),
async_ff_sync.o.eq(flops[-1])
]
return m
Xilinx7SeriesPlatform = XilinxPlatform

View file

@ -1,466 +1,6 @@
from abc import abstractproperty
from ..hdl import *
from ..lib.cdc import ResetSynchronizer
from ..build import *
from .xilinx import XilinxPlatform
__all__ = ["XilinxSpartan3APlatform", "XilinxSpartan6Platform"]
# The interface to Spartan 3 and 6 are substantially the same. Handle
# differences internally using one class and expose user-aliases for
# convenience.
class XilinxSpartan3Or6Platform(TemplatedPlatform):
"""
Required tools:
* ISE toolchain:
* ``xst``
* ``ngdbuild``
* ``map``
* ``par``
* ``bitgen``
The environment is populated by running the script specified in the environment variable
``NMIGEN_ENV_ISE``, if present.
Available overrides:
* ``script_after_run``: inserts commands after ``run`` in XST script.
* ``add_constraints``: inserts commands in UCF file.
* ``xst_opts``: adds extra options for ``xst``.
* ``ngdbuild_opts``: adds extra options for ``ngdbuild``.
* ``map_opts``: adds extra options for ``map``.
* ``par_opts``: adds extra options for ``par``.
* ``bitgen_opts``: adds extra and overrides default options for ``bitgen``;
default options: ``-g Compress``.
Build products:
* ``{{name}}.srp``: synthesis report.
* ``{{name}}.ngc``: synthesized RTL.
* ``{{name}}.bld``: NGDBuild log.
* ``{{name}}.ngd``: design database.
* ``{{name}}_map.map``: MAP log.
* ``{{name}}_map.mrp``: mapping report.
* ``{{name}}_map.ncd``: mapped netlist.
* ``{{name}}.pcf``: physical constraints.
* ``{{name}}_par.par``: PAR log.
* ``{{name}}_par_pad.txt``: I/O usage report.
* ``{{name}}_par.ncd``: place and routed netlist.
* ``{{name}}.drc``: DRC report.
* ``{{name}}.bgn``: BitGen log.
* ``{{name}}.bit``: binary bitstream with metadata.
* ``{{name}}.bin``: raw binary bitstream.
"""
toolchain = "ISE"
device = abstractproperty()
package = abstractproperty()
speed = abstractproperty()
required_tools = [
"xst",
"ngdbuild",
"map",
"par",
"bitgen",
]
@property
def family(self):
device = self.device.upper()
if device.startswith("XC3S"):
if device.endswith("A"):
return "3A"
elif device.endswith("E"):
raise NotImplementedError("""Spartan 3E family is not supported
as a nMigen platform.""")
else:
raise NotImplementedError("""Spartan 3 family is not supported
as a nMigen platform.""")
elif device.startswith("XC6S"):
return "6"
else:
assert False
file_templates = {
**TemplatedPlatform.build_script_templates,
"build_{{name}}.sh": r"""
# {{autogenerated}}
set -e{{verbose("x")}}
if [ -z "$BASH" ] ; then exec /bin/bash "$0" "$@"; fi
[ -n "${{platform._toolchain_env_var}}" ] && . "${{platform._toolchain_env_var}}"
{{emit_commands("sh")}}
""",
"{{name}}.v": r"""
/* {{autogenerated}} */
{{emit_verilog()}}
""",
"{{name}}.debug.v": r"""
/* {{autogenerated}} */
{{emit_debug_verilog()}}
""",
"{{name}}.prj": r"""
# {{autogenerated}}
{% for file in platform.iter_files(".vhd", ".vhdl") -%}
vhdl work {{file}}
{% endfor %}
{% for file in platform.iter_files(".v") -%}
verilog work {{file}}
{% endfor %}
verilog work {{name}}.v
""",
"{{name}}.xst": r"""
# {{autogenerated}}
run
-ifn {{name}}.prj
-ofn {{name}}.ngc
-top {{name}}
{% if platform.family in ["3", "3E", "3A"] %}
-use_new_parser yes
{% endif %}
-p {{platform.device}}{{platform.package}}-{{platform.speed}}
{{get_override("script_after_run")|default("# (script_after_run placeholder)")}}
""",
"{{name}}.ucf": r"""
# {{autogenerated}}
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
{% set port_name = port_name|replace("[", "<")|replace("]", ">") -%}
NET "{{port_name}}" LOC={{pin_name}};
{% for attr_name, attr_value in attrs.items() -%}
NET "{{port_name}}" {{attr_name}}={{attr_value}};
{% endfor %}
{% endfor %}
{% for net_signal, port_signal, frequency in platform.iter_clock_constraints() -%}
NET "{{net_signal|hierarchy("/")}}" TNM_NET="PRD{{net_signal|hierarchy("/")}}";
TIMESPEC "TS{{net_signal|hierarchy("/")}}"=PERIOD "PRD{{net_signal|hierarchy("/")}}" {{1000000000/frequency}} ns HIGH 50%;
{% endfor %}
{{get_override("add_constraints")|default("# (add_constraints placeholder)")}}
"""
}
command_templates = [
r"""
{{invoke_tool("xst")}}
{{get_override("xst_opts")|options}}
-ifn {{name}}.xst
""",
r"""
{{invoke_tool("ngdbuild")}}
{{quiet("-quiet")}}
{{verbose("-verbose")}}
{{get_override("ngdbuild_opts")|options}}
-uc {{name}}.ucf
{{name}}.ngc
""",
r"""
{{invoke_tool("map")}}
{{verbose("-detail")}}
{{get_override("map_opts")|default([])|options}}
-w
-o {{name}}_map.ncd
{{name}}.ngd
{{name}}.pcf
""",
r"""
{{invoke_tool("par")}}
{{get_override("par_opts")|default([])|options}}
-w
{{name}}_map.ncd
{{name}}_par.ncd
{{name}}.pcf
""",
r"""
{{invoke_tool("bitgen")}}
{{get_override("bitgen_opts")|default(["-g Compress"])|options}}
-w
-g Binary:Yes
{{name}}_par.ncd
{{name}}.bit
"""
]
def create_missing_domain(self, name):
# Xilinx devices have a global write enable (GWE) signal that asserted during configuraiton
# and deasserted once it ends. Because it is an asynchronous signal (GWE is driven by logic
# syncronous to configuration clock, which is not used by most designs), even though it is
# a low-skew global network, its deassertion may violate a setup/hold constraint with
# relation to a user clock. The recommended solution is to use a BUFGCE driven by the EOS
# signal (if available). For details, see:
# * https://www.xilinx.com/support/answers/44174.html
# * https://www.xilinx.com/support/documentation/white_papers/wp272.pdf
if self.family != "6":
# Spartan 3 lacks a STARTUP primitive with EOS output; use a simple ResetSynchronizer
# in that case, as is the default.
return super().create_missing_domain(name)
if name == "sync" and self.default_clk is not None:
clk_i = self.request(self.default_clk).i
if self.default_rst is not None:
rst_i = self.request(self.default_rst).i
m = Module()
eos = Signal()
m.submodules += Instance("STARTUP_SPARTAN6", o_EOS=eos)
m.domains += ClockDomain("sync", reset_less=self.default_rst is None)
m.submodules += Instance("BUFGCE", i_CE=eos, i_I=clk_i, o_O=ClockSignal("sync"))
if self.default_rst is not None:
m.submodules.reset_sync = ResetSynchronizer(rst_i, domain="sync")
return m
def _get_xdr_buffer(self, m, pin, *, i_invert=False, o_invert=False):
def get_dff(clk, d, q):
# SDR I/O is performed by packing a flip-flop into the pad IOB.
for bit in range(len(q)):
m.submodules += Instance("FDCE",
a_IOB="TRUE",
i_C=clk,
i_CE=Const(1),
i_CLR=Const(0),
i_D=d[bit],
o_Q=q[bit]
)
def get_iddr(clk, d, q0, q1):
for bit in range(len(q0)):
m.submodules += Instance("IDDR2",
p_DDR_ALIGNMENT="C0",
p_SRTYPE="ASYNC",
p_INIT_Q0=0, p_INIT_Q1=0,
i_C0=clk, i_C1=~clk,
i_CE=Const(1),
i_S=Const(0), i_R=Const(0),
i_D=d[bit],
o_Q0=q0[bit], o_Q1=q1[bit]
)
def get_oddr(clk, d0, d1, q):
for bit in range(len(q)):
m.submodules += Instance("ODDR2",
p_DDR_ALIGNMENT="C0",
p_SRTYPE="ASYNC",
p_INIT=0,
i_C0=clk, i_C1=~clk,
i_CE=Const(1),
i_S=Const(0), i_R=Const(0),
i_D0=d0[bit], i_D1=d1[bit],
o_Q=q[bit]
)
def get_ineg(y, invert):
if invert:
a = Signal.like(y, name_suffix="_n")
m.d.comb += y.eq(~a)
return a
else:
return y
def get_oneg(a, invert):
if invert:
y = Signal.like(a, name_suffix="_n")
m.d.comb += y.eq(~a)
return y
else:
return a
if "i" in pin.dir:
if pin.xdr < 2:
pin_i = get_ineg(pin.i, i_invert)
elif pin.xdr == 2:
pin_i0 = get_ineg(pin.i0, i_invert)
pin_i1 = get_ineg(pin.i1, i_invert)
if "o" in pin.dir:
if pin.xdr < 2:
pin_o = get_oneg(pin.o, o_invert)
elif pin.xdr == 2:
pin_o0 = get_oneg(pin.o0, o_invert)
pin_o1 = get_oneg(pin.o1, o_invert)
i = o = t = None
if "i" in pin.dir:
i = Signal(pin.width, name="{}_xdr_i".format(pin.name))
if "o" in pin.dir:
o = Signal(pin.width, name="{}_xdr_o".format(pin.name))
if pin.dir in ("oe", "io"):
t = Signal(1, name="{}_xdr_t".format(pin.name))
if pin.xdr == 0:
if "i" in pin.dir:
i = pin_i
if "o" in pin.dir:
o = pin_o
if pin.dir in ("oe", "io"):
t = ~pin.oe
elif pin.xdr == 1:
if "i" in pin.dir:
get_dff(pin.i_clk, i, pin_i)
if "o" in pin.dir:
get_dff(pin.o_clk, pin_o, o)
if pin.dir in ("oe", "io"):
get_dff(pin.o_clk, ~pin.oe, t)
elif pin.xdr == 2:
if "i" in pin.dir:
# Re-register first input before it enters fabric. This allows both inputs to
# enter fabric on the same clock edge, and adds one cycle of latency.
i0_ff = Signal.like(pin_i0, name_suffix="_ff")
get_dff(pin.i_clk, i0_ff, pin_i0)
get_iddr(pin.i_clk, i, i0_ff, pin_i1)
if "o" in pin.dir:
get_oddr(pin.o_clk, pin_o0, pin_o1, o)
if pin.dir in ("oe", "io"):
get_dff(pin.o_clk, ~pin.oe, t)
else:
assert False
return (i, o, t)
def get_input(self, pin, port, attrs, invert):
self._check_feature("single-ended input", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IBUF",
i_I=port.io[bit],
o_O=i[bit]
)
return m
def get_output(self, pin, port, attrs, invert):
self._check_feature("single-ended output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUF",
i_I=o[bit],
o_O=port.io[bit]
)
return m
def get_tristate(self, pin, port, attrs, invert):
self._check_feature("single-ended tristate", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFT",
i_T=t,
i_I=o[bit],
o_O=port.io[bit]
)
return m
def get_input_output(self, pin, port, attrs, invert):
self._check_feature("single-ended input/output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IOBUF",
i_T=t,
i_I=o[bit],
o_O=i[bit],
io_IO=port.io[bit]
)
return m
def get_diff_input(self, pin, port, attrs, invert):
self._check_feature("differential input", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IBUFDS",
i_I=port.p[bit], i_IB=port.n[bit],
o_O=i[bit]
)
return m
def get_diff_output(self, pin, port, attrs, invert):
self._check_feature("differential output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFDS",
i_I=o[bit],
o_O=port.p[bit], o_OB=port.n[bit]
)
return m
def get_diff_tristate(self, pin, port, attrs, invert):
self._check_feature("differential tristate", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFTDS",
i_T=t,
i_I=o[bit],
o_O=port.p[bit], o_OB=port.n[bit]
)
return m
def get_diff_input_output(self, pin, port, attrs, invert):
self._check_feature("differential input/output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IOBUFDS",
i_T=t,
i_I=o[bit],
o_O=i[bit],
io_IO=port.p[bit], io_IOB=port.n[bit]
)
return m
# The synchronizer implementations below apply the ASYNC_REG attribute. This attribute
# prevents inference of shift registers from synchronizer FFs, and constraints the FFs
# to be placed as close as possible, ideally in one CLB. This attribute only affects
# the synchronizer FFs themselves.
def get_ff_sync(self, ff_sync):
if ff_sync._max_input_delay is not None:
raise NotImplementedError("Platform '{}' does not support constraining input delay "
"for FFSynchronizer"
.format(type(self).__name__))
m = Module()
flops = [Signal(ff_sync.i.shape(), name="stage{}".format(index),
reset=ff_sync._reset, reset_less=ff_sync._reset_less,
attrs={"ASYNC_REG": "TRUE"})
for index in range(ff_sync._stages)]
for i, o in zip((ff_sync.i, *flops), flops):
m.d[ff_sync._o_domain] += o.eq(i)
m.d.comb += ff_sync.o.eq(flops[-1])
return m
def get_async_ff_sync(self, async_ff_sync):
if async_ff_sync._max_input_delay is not None:
raise NotImplementedError("Platform '{}' does not support constraining input delay "
"for AsyncFFSynchronizer"
.format(type(self).__name__))
m = Module()
m.domains += ClockDomain("async_ff", async_reset=True, local=True)
flops = [Signal(1, name="stage{}".format(index), reset=1,
attrs={"ASYNC_REG": "TRUE"})
for index in range(async_ff_sync._stages)]
for i, o in zip((0, *flops), flops):
m.d.async_ff += o.eq(i)
if async_ff_sync._edge == "pos":
m.d.comb += ResetSignal("async_ff").eq(async_ff_sync.i)
else:
m.d.comb += ResetSignal("async_ff").eq(~async_ff_sync.i)
m.d.comb += [
ClockSignal("async_ff").eq(ClockSignal(async_ff_sync._o_domain)),
async_ff_sync.o.eq(flops[-1])
]
return m
XilinxSpartan3APlatform = XilinxSpartan3Or6Platform
XilinxSpartan6Platform = XilinxSpartan3Or6Platform
XilinxSpartan3APlatform = XilinxPlatform
XilinxSpartan6Platform = XilinxPlatform

View file

@ -1,434 +1,5 @@
from abc import abstractproperty
from ..hdl import *
from ..lib.cdc import ResetSynchronizer
from ..build import *
from .xilinx import XilinxPlatform
__all__ = ["XilinxUltraScalePlatform"]
class XilinxUltraScalePlatform(TemplatedPlatform):
"""
Required tools:
* ``vivado``
The environment is populated by running the script specified in the environment variable
``NMIGEN_ENV_Vivado``, if present.
Available overrides:
* ``script_after_read``: inserts commands after ``read_xdc`` in Tcl script.
* ``script_after_synth``: inserts commands after ``synth_design`` in Tcl script.
* ``script_after_place``: inserts commands after ``place_design`` in Tcl script.
* ``script_after_route``: inserts commands after ``route_design`` in Tcl script.
* ``script_before_bitstream``: inserts commands before ``write_bitstream`` in Tcl script.
* ``script_after_bitstream``: inserts commands after ``write_bitstream`` in Tcl script.
* ``add_constraints``: inserts commands in XDC file.
* ``vivado_opts``: adds extra options for ``vivado``.
Build products:
* ``{{name}}.log``: Vivado log.
* ``{{name}}_timing_synth.rpt``: Vivado report.
* ``{{name}}_utilization_hierarchical_synth.rpt``: Vivado report.
* ``{{name}}_utilization_synth.rpt``: Vivado report.
* ``{{name}}_utilization_hierarchical_place.rpt``: Vivado report.
* ``{{name}}_utilization_place.rpt``: Vivado report.
* ``{{name}}_io.rpt``: Vivado report.
* ``{{name}}_control_sets.rpt``: Vivado report.
* ``{{name}}_clock_utilization.rpt``: Vivado report.
* ``{{name}}_route_status.rpt``: Vivado report.
* ``{{name}}_drc.rpt``: Vivado report.
* ``{{name}}_methodology.rpt``: Vivado report.
* ``{{name}}_timing.rpt``: Vivado report.
* ``{{name}}_power.rpt``: Vivado report.
* ``{{name}}_route.dcp``: Vivado design checkpoint.
* ``{{name}}.bit``: binary bitstream with metadata.
* ``{{name}}.bin``: binary bitstream.
"""
toolchain = "Vivado"
device = abstractproperty()
package = abstractproperty()
speed = abstractproperty()
required_tools = ["vivado"]
file_templates = {
**TemplatedPlatform.build_script_templates,
"build_{{name}}.sh": r"""
# {{autogenerated}}
set -e{{verbose("x")}}
if [ -z "$BASH" ] ; then exec /bin/bash "$0" "$@"; fi
[ -n "${{platform._toolchain_env_var}}" ] && . "${{platform._toolchain_env_var}}"
{{emit_commands("sh")}}
""",
"{{name}}.v": r"""
/* {{autogenerated}} */
{{emit_verilog()}}
""",
"{{name}}.debug.v": r"""
/* {{autogenerated}} */
{{emit_debug_verilog()}}
""",
"{{name}}.tcl": r"""
# {{autogenerated}}
create_project -force -name {{name}} -part {{platform.device}}-{{platform.package}}-{{platform.speed}}
{% for file in platform.iter_files(".v", ".sv", ".vhd", ".vhdl") -%}
add_files {{file|tcl_escape}}
{% endfor %}
add_files {{name}}.v
read_xdc {{name}}.xdc
{% for file in platform.iter_files(".xdc") -%}
read_xdc {{file|tcl_escape}}
{% endfor %}
{{get_override("script_after_read")|default("# (script_after_read placeholder)")}}
synth_design -top {{name}}
foreach cell [get_cells -quiet -hier -filter {nmigen.vivado.false_path == "TRUE"}] {
set_false_path -to $cell
}
foreach cell [get_cells -quiet -hier -filter {nmigen.vivado.max_delay != ""}] {
set clock [get_clocks -of_objects \
[all_fanin -flat -startpoints_only [get_pin $cell/D]]]
if {[llength $clock] != 0} {
set_max_delay -datapath_only -from $clock \
-to [get_cells $cell] [get_property nmigen.vivado.max_delay $cell]
}
}
{{get_override("script_after_synth")|default("# (script_after_synth placeholder)")}}
report_timing_summary -file {{name}}_timing_synth.rpt
report_utilization -hierarchical -file {{name}}_utilization_hierarchical_synth.rpt
report_utilization -file {{name}}_utilization_synth.rpt
opt_design
place_design
{{get_override("script_after_place")|default("# (script_after_place placeholder)")}}
report_utilization -hierarchical -file {{name}}_utilization_hierarchical_place.rpt
report_utilization -file {{name}}_utilization_place.rpt
report_io -file {{name}}_io.rpt
report_control_sets -verbose -file {{name}}_control_sets.rpt
report_clock_utilization -file {{name}}_clock_utilization.rpt
route_design
{{get_override("script_after_route")|default("# (script_after_route placeholder)")}}
phys_opt_design
report_timing_summary -no_header -no_detailed_paths
write_checkpoint -force {{name}}_route.dcp
report_route_status -file {{name}}_route_status.rpt
report_drc -file {{name}}_drc.rpt
report_methodology -file {{name}}_methodology.rpt
report_timing_summary -datasheet -max_paths 10 -file {{name}}_timing.rpt
report_power -file {{name}}_power.rpt
{{get_override("script_before_bitstream")|default("# (script_before_bitstream placeholder)")}}
write_bitstream -force -bin_file {{name}}.bit
{{get_override("script_after_bitstream")|default("# (script_after_bitstream placeholder)")}}
quit
""",
"{{name}}.xdc": r"""
# {{autogenerated}}
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
set_property LOC {{pin_name}} [get_ports {{port_name|tcl_escape}}]
{% for attr_name, attr_value in attrs.items() -%}
set_property {{attr_name}} {{attr_value|tcl_escape}} [get_ports {{port_name|tcl_escape}}]
{% endfor %}
{% endfor %}
{% for net_signal, port_signal, frequency in platform.iter_clock_constraints() -%}
{% if port_signal is not none -%}
create_clock -name {{port_signal.name|ascii_escape}} -period {{1000000000/frequency}} [get_ports {{port_signal.name|tcl_escape}}]
{% else -%}
create_clock -name {{net_signal.name|ascii_escape}} -period {{1000000000/frequency}} [get_nets {{net_signal|hierarchy("/")|tcl_escape}}]
{% endif %}
{% endfor %}
{{get_override("add_constraints")|default("# (add_constraints placeholder)")}}
"""
}
command_templates = [
r"""
{{invoke_tool("vivado")}}
{{verbose("-verbose")}}
{{get_override("vivado_opts")|options}}
-mode batch
-log {{name}}.log
-source {{name}}.tcl
"""
]
def create_missing_domain(self, name):
# Xilinx devices have a global write enable (GWE) signal that asserted during configuraiton
# and deasserted once it ends. Because it is an asynchronous signal (GWE is driven by logic
# syncronous to configuration clock, which is not used by most designs), even though it is
# a low-skew global network, its deassertion may violate a setup/hold constraint with
# relation to a user clock. The recommended solution is to use a BUFGCE driven by the EOS
# signal. For details, see:
# * https://www.xilinx.com/support/answers/44174.html
# * https://www.xilinx.com/support/documentation/white_papers/wp272.pdf
if name == "sync" and self.default_clk is not None:
clk_i = self.request(self.default_clk).i
if self.default_rst is not None:
rst_i = self.request(self.default_rst).i
m = Module()
ready = Signal()
m.submodules += Instance("STARTUPE3", o_EOS=ready)
m.domains += ClockDomain("sync", reset_less=self.default_rst is None)
m.submodules += Instance("BUFGCE",
p_SIM_DEVICE="ULTRASCALE",
i_CE=ready,
i_I=clk_i,
o_O=ClockSignal("sync")
)
if self.default_rst is not None:
m.submodules.reset_sync = ResetSynchronizer(rst_i, domain="sync")
return m
def add_clock_constraint(self, clock, frequency):
super().add_clock_constraint(clock, frequency)
clock.attrs["keep"] = "TRUE"
def _get_xdr_buffer(self, m, pin, *, i_invert=False, o_invert=False):
def get_dff(clk, d, q):
# SDR I/O is performed by packing a flip-flop into the pad IOB.
for bit in range(len(q)):
m.submodules += Instance("FDCE",
a_IOB="TRUE",
i_C=clk,
i_CE=Const(1),
i_CLR=Const(0),
i_D=d[bit],
o_Q=q[bit]
)
def get_iddr(clk, d, q1, q2):
for bit in range(len(q1)):
m.submodules += Instance("IDDRE1",
p_DDR_CLK_EDGE="SAME_EDGE_PIPELINED",
p_IS_C_INVERTED=0, p_IS_CB_INVERTED=1,
i_C=clk, i_CB=clk,
i_R=Const(0),
i_D=d[bit],
o_Q1=q1[bit], o_Q2=q2[bit]
)
def get_oddr(clk, d1, d2, q):
for bit in range(len(q)):
m.submodules += Instance("ODDRE1",
p_DDR_CLK_EDGE="SAME_EDGE",
p_INIT=0,
i_C=clk,
i_SR=Const(0),
i_D1=d1[bit], i_D2=d2[bit],
o_Q=q[bit]
)
def get_ineg(y, invert):
if invert:
a = Signal.like(y, name_suffix="_n")
m.d.comb += y.eq(~a)
return a
else:
return y
def get_oneg(a, invert):
if invert:
y = Signal.like(a, name_suffix="_n")
m.d.comb += y.eq(~a)
return y
else:
return a
if "i" in pin.dir:
if pin.xdr < 2:
pin_i = get_ineg(pin.i, i_invert)
elif pin.xdr == 2:
pin_i0 = get_ineg(pin.i0, i_invert)
pin_i1 = get_ineg(pin.i1, i_invert)
if "o" in pin.dir:
if pin.xdr < 2:
pin_o = get_oneg(pin.o, o_invert)
elif pin.xdr == 2:
pin_o0 = get_oneg(pin.o0, o_invert)
pin_o1 = get_oneg(pin.o1, o_invert)
i = o = t = None
if "i" in pin.dir:
i = Signal(pin.width, name="{}_xdr_i".format(pin.name))
if "o" in pin.dir:
o = Signal(pin.width, name="{}_xdr_o".format(pin.name))
if pin.dir in ("oe", "io"):
t = Signal(1, name="{}_xdr_t".format(pin.name))
if pin.xdr == 0:
if "i" in pin.dir:
i = pin_i
if "o" in pin.dir:
o = pin_o
if pin.dir in ("oe", "io"):
t = ~pin.oe
elif pin.xdr == 1:
if "i" in pin.dir:
get_dff(pin.i_clk, i, pin_i)
if "o" in pin.dir:
get_dff(pin.o_clk, pin_o, o)
if pin.dir in ("oe", "io"):
get_dff(pin.o_clk, ~pin.oe, t)
elif pin.xdr == 2:
if "i" in pin.dir:
get_iddr(pin.i_clk, i, pin_i0, pin_i1)
if "o" in pin.dir:
get_oddr(pin.o_clk, pin_o0, pin_o1, o)
if pin.dir in ("oe", "io"):
get_dff(pin.o_clk, ~pin.oe, t)
else:
assert False
return (i, o, t)
def get_input(self, pin, port, attrs, invert):
self._check_feature("single-ended input", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IBUF",
i_I=port.io[bit],
o_O=i[bit]
)
return m
def get_output(self, pin, port, attrs, invert):
self._check_feature("single-ended output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUF",
i_I=o[bit],
o_O=port.io[bit]
)
return m
def get_tristate(self, pin, port, attrs, invert):
self._check_feature("single-ended tristate", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFT",
i_T=t,
i_I=o[bit],
o_O=port.io[bit]
)
return m
def get_input_output(self, pin, port, attrs, invert):
self._check_feature("single-ended input/output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IOBUF",
i_T=t,
i_I=o[bit],
o_O=i[bit],
io_IO=port.io[bit]
)
return m
def get_diff_input(self, pin, port, attrs, invert):
self._check_feature("differential input", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IBUFDS",
i_I=port.p[bit], i_IB=port.n[bit],
o_O=i[bit]
)
return m
def get_diff_output(self, pin, port, attrs, invert):
self._check_feature("differential output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFDS",
i_I=o[bit],
o_O=port.p[bit], o_OB=port.n[bit]
)
return m
def get_diff_tristate(self, pin, port, attrs, invert):
self._check_feature("differential tristate", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFTDS",
i_T=t,
i_I=o[bit],
o_O=port.p[bit], o_OB=port.n[bit]
)
return m
def get_diff_input_output(self, pin, port, attrs, invert):
self._check_feature("differential input/output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IOBUFDS",
i_T=t,
i_I=o[bit],
o_O=i[bit],
io_IO=port.p[bit], io_IOB=port.n[bit]
)
return m
# The synchronizer implementations below apply two separate but related timing constraints.
#
# First, the ASYNC_REG attribute prevents inference of shift registers from synchronizer FFs,
# and constraints the FFs to be placed as close as possible, ideally in one CLB. This attribute
# only affects the synchronizer FFs themselves.
#
# Second, the nmigen.vivado.false_path or nmigen.vivado.max_delay attribute affects the path
# into the synchronizer. If maximum input delay is specified, a datapath-only maximum delay
# constraint is applied, limiting routing delay (and therefore skew) at the synchronizer input.
# Otherwise, a false path constraint is used to omit the input path from the timing analysis.
def get_ff_sync(self, ff_sync):
m = Module()
flops = [Signal(ff_sync.i.shape(), name="stage{}".format(index),
reset=ff_sync._reset, reset_less=ff_sync._reset_less,
attrs={"ASYNC_REG": "TRUE"})
for index in range(ff_sync._stages)]
if ff_sync._max_input_delay is None:
flops[0].attrs["nmigen.vivado.false_path"] = "TRUE"
else:
flops[0].attrs["nmigen.vivado.max_delay"] = str(ff_sync._max_input_delay * 1e9)
for i, o in zip((ff_sync.i, *flops), flops):
m.d[ff_sync._o_domain] += o.eq(i)
m.d.comb += ff_sync.o.eq(flops[-1])
return m
def get_async_ff_sync(self, async_ff_sync):
m = Module()
m.domains += ClockDomain("async_ff", async_reset=True, local=True)
flops = [Signal(1, name="stage{}".format(index), reset=1,
attrs={"ASYNC_REG": "TRUE"})
for index in range(async_ff_sync._stages)]
if async_ff_sync._max_input_delay is None:
flops[0].attrs["nmigen.vivado.false_path"] = "TRUE"
else:
flops[0].attrs["nmigen.vivado.max_delay"] = str(async_ff_sync._max_input_delay * 1e9)
for i, o in zip((0, *flops), flops):
m.d.async_ff += o.eq(i)
if async_ff_sync._edge == "pos":
m.d.comb += ResetSignal("async_ff").eq(async_ff_sync.i)
else:
m.d.comb += ResetSignal("async_ff").eq(~async_ff_sync.i)
m.d.comb += [
ClockSignal("async_ff").eq(ClockSignal(async_ff_sync._o_domain)),
async_ff_sync.o.eq(flops[-1])
]
return m
XilinxUltraScalePlatform = XilinxPlatform