amaranth/tests/test_hdl_dsl.py
Catherine 0140fe27e2 hdl._dsl: forbid empty string as submodule name.
This is semantically ambiguous and breaks the RTLIL emitter.

Fixes #1209.
2024-06-10 12:29:20 +00:00

1017 lines
32 KiB
Python

# amaranth: UnusedElaboratable=no
import sys
from collections import OrderedDict
from amaranth.hdl._ast import *
from amaranth.hdl._cd import *
from amaranth.hdl._dsl import *
from amaranth.hdl._ir import *
from amaranth.lib.enum import Enum
from .utils import *
from amaranth._utils import _ignore_deprecated
class DSLTestCase(FHDLTestCase):
def setUp(self):
self.s1 = Signal()
self.s2 = Signal()
self.s3 = Signal()
self.c1 = Signal()
self.c2 = Signal()
self.c3 = Signal()
self.w1 = Signal(4)
def test_cant_inherit(self):
with self.assertRaisesRegex(SyntaxError,
(r"^Instead of inheriting from `Module`, inherit from `Elaboratable` and "
r"return a `Module` from the `elaborate\(self, platform\)` method$")):
class ORGate(Module):
pass
def test_d_comb(self):
m = Module()
m.d.comb += self.c1.eq(1)
m._flush()
self.assertEqual(m._driving[self.c1], "comb")
self.assertRepr(m._statements["comb"], """(
(eq (sig c1) (const 1'd1))
)""")
def test_d_sync(self):
m = Module()
m.d.sync += self.c1.eq(1)
m._flush()
self.assertEqual(m._driving[self.c1], "sync")
self.assertRepr(m._statements["sync"], """(
(eq (sig c1) (const 1'd1))
)""")
def test_d_pix(self):
m = Module()
m.d.pix += self.c1.eq(1)
m._flush()
self.assertEqual(m._driving[self.c1], "pix")
self.assertRepr(m._statements["pix"], """(
(eq (sig c1) (const 1'd1))
)""")
def test_d_index(self):
m = Module()
m.d["pix"] += self.c1.eq(1)
m._flush()
self.assertEqual(m._driving[self.c1], "pix")
self.assertRepr(m._statements["pix"], """(
(eq (sig c1) (const 1'd1))
)""")
def test_d_no_conflict(self):
m = Module()
m.d.comb += self.w1[0].eq(1)
m.d.comb += self.w1[1].eq(1)
def test_d_conflict(self):
m = Module()
with self.assertRaisesRegex(SyntaxError,
(r"^Driver-driver conflict: trying to drive \(sig c1\) from d\.sync, but it "
r"is already driven from d\.comb$")):
m.d.comb += self.c1.eq(1)
m.d.sync += self.c1.eq(1)
def test_d_wrong(self):
m = Module()
with self.assertRaisesRegex(AttributeError,
r"^Cannot assign 'd\.pix' attribute; did you mean 'd.pix \+='\?$"):
m.d.pix = None
def test_d_asgn_wrong(self):
m = Module()
with self.assertRaisesRegex(SyntaxError,
r"^Only assignments, prints, and property checks may be appended to d\.sync$"):
m.d.sync += Switch(self.s1, {})
def test_comb_wrong(self):
m = Module()
with self.assertRaisesRegex(AttributeError,
r"^'Module' object has no attribute 'comb'; did you mean 'd\.comb'\?$"):
m.comb += self.c1.eq(1)
def test_sync_wrong(self):
m = Module()
with self.assertRaisesRegex(AttributeError,
r"^'Module' object has no attribute 'sync'; did you mean 'd\.sync'\?$"):
m.sync += self.c1.eq(1)
def test_attr_wrong(self):
m = Module()
with self.assertRaisesRegex(AttributeError,
r"^'Module' object has no attribute 'nonexistentattr'$"):
m.nonexistentattr
def test_d_suspicious(self):
m = Module()
with self.assertWarnsRegex(SyntaxWarning,
(r"^Using '<module>\.d\.submodules' would add statements to clock domain "
r"'submodules'; did you mean <module>\.submodules instead\?$")):
m.d.submodules += []
def test_clock_signal(self):
m = Module()
m.d.comb += ClockSignal("pix").eq(ClockSignal())
self.assertRepr(m._statements["comb"], """
(
(eq (clk pix) (clk sync))
)
""")
def test_reset_signal(self):
m = Module()
m.d.comb += ResetSignal("pix").eq(1)
self.assertRepr(m._statements["comb"], """
(
(eq (rst pix) (const 1'd1))
)
""")
def test_If(self):
m = Module()
with m.If(self.s1):
m.d.comb += self.c1.eq(1)
m._flush()
self.assertRepr(m._statements["comb"], """
(
(switch (cat (sig s1))
(case 1 (eq (sig c1) (const 1'd1)))
)
)
""")
def test_If_Elif(self):
m = Module()
with m.If(self.s1):
m.d.comb += self.c1.eq(1)
with m.Elif(self.s2):
m.d.comb += self.c2.eq(0)
m._flush()
self.assertRepr(m._statements["comb"], """
(
(switch (cat (sig s1) (sig s2))
(case -1 (eq (sig c1) (const 1'd1)))
(case 1- (eq (sig c2) (const 1'd0)))
)
)
""")
def test_If_Elif_multi(self):
m = Module()
with m.If(self.s1):
m.d.comb += self.c1.eq(1)
with m.Elif(self.s2):
m.d.sync += self.c2.eq(0)
m._flush()
self.assertRepr(m._statements["comb"], """
(
(switch (cat (sig s1) (sig s2))
(case -1 (eq (sig c1) (const 1'd1)))
(case 1- )
)
)
""")
self.assertRepr(m._statements["sync"], """
(
(switch (cat (sig s1) (sig s2))
(case -1 )
(case 1- (eq (sig c2) (const 1'd0)))
)
)
""")
def test_If_Elif_Else(self):
m = Module()
with m.If(self.s1):
m.d.comb += self.c1.eq(1)
with m.Elif(self.s2):
m.d.sync += self.c2.eq(0)
with m.Else():
m.d.comb += self.c3.eq(1)
m._flush()
self.assertRepr(m._statements["comb"], """
(
(switch (cat (sig s1) (sig s2))
(case -1 (eq (sig c1) (const 1'd1)))
(case 1- )
(default (eq (sig c3) (const 1'd1)))
)
)
""")
self.assertRepr(m._statements["sync"], """
(
(switch (cat (sig s1) (sig s2))
(case -1 )
(case 1- (eq (sig c2) (const 1'd0)))
(default )
)
)
""")
def test_If_If(self):
m = Module()
with m.If(self.s1):
m.d.comb += self.c1.eq(1)
with m.If(self.s2):
m.d.comb += self.c2.eq(1)
m._flush()
self.assertRepr(m._statements["comb"], """
(
(switch (cat (sig s1))
(case 1 (eq (sig c1) (const 1'd1)))
)
(switch (cat (sig s2))
(case 1 (eq (sig c2) (const 1'd1)))
)
)
""")
def test_If_nested_If(self):
m = Module()
with m.If(self.s1):
m.d.comb += self.c1.eq(1)
with m.If(self.s2):
m.d.comb += self.c2.eq(1)
m._flush()
self.assertRepr(m._statements["comb"], """
(
(switch (cat (sig s1))
(case 1 (eq (sig c1) (const 1'd1))
(switch (cat (sig s2))
(case 1 (eq (sig c2) (const 1'd1)))
)
)
)
)
""")
def test_If_dangling_Else(self):
m = Module()
with m.If(self.s1):
m.d.comb += self.c1.eq(1)
with m.If(self.s2):
m.d.comb += self.c2.eq(1)
with m.Else():
m.d.comb += self.c3.eq(1)
m._flush()
self.assertRepr(m._statements["comb"], """
(
(switch (cat (sig s1))
(case 1
(eq (sig c1) (const 1'd1))
(switch (cat (sig s2))
(case 1 (eq (sig c2) (const 1'd1)))
)
)
(default
(eq (sig c3) (const 1'd1))
)
)
)
""")
def test_Elif_wrong(self):
m = Module()
with self.assertRaisesRegex(SyntaxError,
r"^Elif without preceding If$"):
with m.Elif(self.s2):
pass
def test_Elif_wrong_nested(self):
m = Module()
with m.If(self.s1):
with self.assertRaisesRegex(SyntaxError,
r"^Elif without preceding If$"):
with m.Elif(self.s2):
pass
def test_Else_wrong(self):
m = Module()
with self.assertRaisesRegex(SyntaxError,
r"^Else without preceding If\/Elif$"):
with m.Else():
pass
def test_Else_wrong_nested(self):
m = Module()
with m.If(self.s1):
with self.assertRaisesRegex(SyntaxError,
r"^Else without preceding If/Elif$"):
with m.Else():
pass
def test_Elif_Elif_wrong_nested(self):
m = Module()
with m.If(self.s1):
pass
with m.Elif(self.s2):
with self.assertRaisesRegex(SyntaxError,
r"^Elif without preceding If$"):
with m.Elif(self.s3):
pass
def test_Else_Else_wrong_nested(self):
m = Module()
with m.If(self.s1):
pass
with m.Else():
with self.assertRaisesRegex(SyntaxError,
r"^Else without preceding If/Elif$"):
with m.Else():
pass
def test_If_wide(self):
m = Module()
with m.If(self.w1):
m.d.comb += self.c1.eq(1)
m._flush()
self.assertRepr(m._statements["comb"], """
(
(switch (cat (b (sig w1)))
(case 1 (eq (sig c1) (const 1'd1)))
)
)
""")
if sys.version_info < (3, 12): # upstream warning in 3.12!
def test_If_signed_suspicious(self):
m = Module()
with self.assertWarnsRegex(SyntaxWarning,
r"^Signed values in If\/Elif conditions usually result from inverting Python "
r"booleans with ~, which leads to unexpected results\. Replace `~flag` with "
r"`not flag`\. \(If this is a false positive, silence this warning with "
r"`m\.If\(x\)` → `m\.If\(x\.bool\(\)\)`\.\)$"):
with m.If(~True):
pass
def test_Elif_signed_suspicious(self):
m = Module()
with m.If(0):
pass
with self.assertWarnsRegex(SyntaxWarning,
r"^Signed values in If\/Elif conditions usually result from inverting Python "
r"booleans with ~, which leads to unexpected results\. Replace `~flag` with "
r"`not flag`\. \(If this is a false positive, silence this warning with "
r"`m\.If\(x\)` → `m\.If\(x\.bool\(\)\)`\.\)$"):
with m.Elif(~True):
pass
def test_if_If_Elif_Else(self):
m = Module()
with self.assertRaisesRegex(SyntaxError,
r"^`if m\.If\(\.\.\.\):` does not work; use `with m\.If\(\.\.\.\)`$"):
if m.If(0):
pass
with m.If(0):
pass
with self.assertRaisesRegex(SyntaxError,
r"^`if m\.Elif\(\.\.\.\):` does not work; use `with m\.Elif\(\.\.\.\)`$"):
if m.Elif(0):
pass
with self.assertRaisesRegex(SyntaxError,
r"^`if m\.Else\(\.\.\.\):` does not work; use `with m\.Else\(\.\.\.\)`$"):
if m.Else():
pass
def test_Switch(self):
m = Module()
with m.Switch(self.w1):
with m.Case(3):
m.d.comb += self.c1.eq(1)
with m.Case("11--"):
m.d.comb += self.c2.eq(1)
with m.Case("1 0--"):
m.d.comb += self.c2.eq(1)
m._flush()
self.assertRepr(m._statements["comb"], """
(
(switch (sig w1)
(case 0011 (eq (sig c1) (const 1'd1)))
(case 11-- (eq (sig c2) (const 1'd1)))
(case 10-- (eq (sig c2) (const 1'd1)))
)
)
""")
def test_Switch_empty_Case(self):
m = Module()
with m.Switch(self.w1):
with m.Case(3):
m.d.comb += self.c1.eq(1)
with m.Case():
m.d.comb += self.c2.eq(1)
m._flush()
self.assertRepr(m._statements["comb"], """
(
(switch (sig w1)
(case 0011 (eq (sig c1) (const 1'd1)))
(case () (eq (sig c2) (const 1'd1)))
)
)
""")
def test_Switch_default_Default(self):
m = Module()
with m.Switch(self.w1):
with m.Case(3):
m.d.comb += self.c1.eq(1)
with m.Default():
m.d.comb += self.c2.eq(1)
m._flush()
self.assertRepr(m._statements["comb"], """
(
(switch (sig w1)
(case 0011 (eq (sig c1) (const 1'd1)))
(default (eq (sig c2) (const 1'd1)))
)
)
""")
def test_Switch_const_test(self):
m = Module()
with m.Switch(1):
with m.Case(1):
m.d.comb += self.c1.eq(1)
m._flush()
self.assertRepr(m._statements["comb"], """
(
(switch (const 1'd1)
(case 1 (eq (sig c1) (const 1'd1)))
)
)
""")
def test_Switch_enum(self):
class Color(Enum):
RED = 1
BLUE = 2
m = Module()
se = Signal(Color, init=Color.RED)
with m.Switch(se):
with m.Case(Color.RED):
m.d.comb += self.c1.eq(1)
self.assertRepr(m._statements["comb"], """
(
(switch (sig se)
(case 01 (eq (sig c1) (const 1'd1)))
)
)
""")
def test_Switch_const_castable(self):
class Color(Enum, shape=1):
RED = 0
BLUE = 1
m = Module()
se = Signal(2)
with m.Switch(se):
with m.Case(Cat(Color.RED, Color.BLUE)):
m.d.comb += self.c1.eq(1)
self.assertRepr(m._statements["comb"], """
(
(switch (sig se)
(case 10 (eq (sig c1) (const 1'd1)))
)
)
""")
def test_Case_width_wrong(self):
class Color(Enum):
RED = 0b10101010
m = Module()
dummy = Signal()
with m.Switch(self.w1):
with self.assertRaisesRegex(SyntaxError,
r"^Pattern '--' must have the same width as match value \(which is 4\)$"):
with m.Case("--"):
m.d.comb += dummy.eq(0)
with self.assertWarnsRegex(SyntaxWarning,
r"^Pattern '22' \(5'10110\) is not representable in match value shape "
r"\(unsigned\(4\)\); comparison will never be true$"):
with m.Case(0b10110):
m.d.comb += dummy.eq(0)
with self.assertWarnsRegex(SyntaxWarning,
r"^Pattern '<Color.RED: 170>' \(8'10101010\) is not representable in "
r"match value shape \(unsigned\(4\)\); comparison will never be true$"):
with m.Case(Color.RED):
m.d.comb += dummy.eq(0)
self.assertRepr(m._statements["comb"], """
(
(switch (sig w1)
(case () (eq (sig dummy) (const 1'd0)))
(case () (eq (sig dummy) (const 1'd0)))
)
)
""")
def test_Switch_zero_width(self):
m = Module()
s = Signal(0)
with m.Switch(s):
with m.Case(0):
m.d.comb += self.c1.eq(1)
m._flush()
self.assertRepr(m._statements["comb"], """
(
(switch (sig s)
(case (eq (sig c1) (const 1'd1)))
)
)
""")
def test_Case_bits_wrong(self):
m = Module()
with m.Switch(self.w1):
with self.assertRaisesRegex(SyntaxError,
(r"^Pattern 'abc' must consist of 0, 1, and - \(don't care\) bits, "
r"and may include whitespace$")):
with m.Case("abc"):
pass
def test_Case_pattern_wrong(self):
m = Module()
with m.Switch(self.w1):
with self.assertRaisesRegex(SyntaxError,
r"^Pattern must be a string or a constant-castable expression, "
r"not 1\.0$"):
with m.Case(1.0):
pass
def test_Case_outside_Switch_wrong(self):
m = Module()
with self.assertRaisesRegex(SyntaxError,
r"^Case is not permitted outside of Switch$"):
with m.Case():
pass
def test_Case_after_Default_wrong(self):
m = Module()
with m.Switch(self.w1):
with m.Default():
pass
with self.assertWarnsRegex(SyntaxWarning,
r"^A case defined after the default case will never be active$"):
with m.Case():
pass
def test_Default_after_Default_wrong(self):
m = Module()
with m.Switch(self.w1):
with m.Default():
pass
with self.assertWarnsRegex(SyntaxWarning,
r"^A case defined after the default case will never be active$"):
with m.Default():
pass
def test_If_inside_Switch_wrong(self):
m = Module()
with m.Switch(self.s1):
with self.assertRaisesRegex(SyntaxError,
(r"^If is not permitted directly inside of Switch; "
r"it is permitted inside of Switch Case$")):
with m.If(self.s2):
pass
def test_Case_wrong_nested(self):
m = Module()
with m.Switch(self.s1):
with m.Case(0):
with self.assertRaisesRegex(SyntaxError,
r"^Case is not permitted outside of Switch$"):
with m.Case(1):
pass
def test_FSM_basic(self):
a = Signal()
b = Signal()
c = Signal()
m = Module()
with m.FSM():
with m.State("FIRST"):
m.d.comb += a.eq(1)
m.next = "SECOND"
with m.State("SECOND"):
m.d.sync += b.eq(~b)
with m.If(c):
m.next = "FIRST"
frag = m.elaborate(platform=None)
self.assertRepr(frag.statements["comb"], """
(
(switch (sig fsm_state)
(case 0
(eq (sig a) (const 1'd1))
)
(case 1 )
)
(eq (sig) (== (sig fsm_state) (const 1'd0)))
(eq (sig) (== (sig fsm_state) (const 1'd1)))
)
""")
self.assertRepr(frag.statements["sync"], """
(
(switch (sig fsm_state)
(case 0
(eq (sig fsm_state) (const 1'd1))
)
(case 1
(eq (sig b) (~ (sig b)))
(switch (cat (sig c))
(case 1
(eq (sig fsm_state) (const 1'd0)))
)
)
)
)
""")
fsm = frag.find_generated("fsm")
self.assertIsInstance(fsm.state, Signal)
self.assertEqual(fsm.encoding, OrderedDict({
"FIRST": 0,
"SECOND": 1,
}))
self.assertEqual(fsm.decoding, OrderedDict({
0: "FIRST",
1: "SECOND"
}))
def test_FSM_init(self):
a = Signal()
m = Module()
with m.FSM(init="SECOND"):
with m.State("FIRST"):
m.d.comb += a.eq(0)
m.next = "SECOND"
with m.State("SECOND"):
m.next = "FIRST"
frag = m.elaborate(platform=None)
self.assertRepr(frag.statements["comb"], """
(
(switch (sig fsm_state)
(case 0
(eq (sig a) (const 1'd0))
)
(case 1 )
)
(eq (sig) (== (sig fsm_state) (const 1'd0)))
(eq (sig) (== (sig fsm_state) (const 1'd1)))
)
""")
self.assertRepr(frag.statements["sync"], """
(
(switch (sig fsm_state)
(case 0
(eq (sig fsm_state) (const 1'd1))
)
(case 1
(eq (sig fsm_state) (const 1'd0))
)
)
)
""")
self.assertEqual(m._generated["fsm"].state.init, 1)
def test_FSM_reset(self):
a = Signal()
m = Module()
with self.assertWarnsRegex(DeprecationWarning,
r"^`reset=` is deprecated, use `init=` instead$"):
with m.FSM(reset="SECOND"):
with m.State("FIRST"):
m.d.comb += a.eq(0)
m.next = "SECOND"
with m.State("SECOND"):
m.next = "FIRST"
frag = m.elaborate(platform=None)
self.assertRepr(frag.statements["comb"], """
(
(switch (sig fsm_state)
(case 0
(eq (sig a) (const 1'd0))
)
(case 1 )
)
(eq (sig) (== (sig fsm_state) (const 1'd0)))
(eq (sig) (== (sig fsm_state) (const 1'd1)))
)
""")
self.assertRepr(frag.statements["sync"], """
(
(switch (sig fsm_state)
(case 0
(eq (sig fsm_state) (const 1'd1))
)
(case 1
(eq (sig fsm_state) (const 1'd0))
)
)
)
""")
self.assertEqual(m._generated["fsm"].state.init, 1)
def test_FSM_reset_wrong(self):
a = Signal()
m = Module()
with self.assertRaisesRegex(ValueError,
r"^Cannot specify both `reset` and `init`$"):
with m.FSM(reset="SECOND", init="SECOND"):
with m.State("FIRST"):
m.d.comb += a.eq(0)
m.next = "SECOND"
with m.State("SECOND"):
m.next = "FIRST"
def test_FSM_ongoing(self):
a = Signal()
b = Signal()
m = Module()
with m.FSM() as fsm:
m.d.comb += b.eq(fsm.ongoing("SECOND"))
with m.State("FIRST"):
pass
m.d.comb += a.eq(fsm.ongoing("FIRST"))
with m.State("SECOND"):
pass
frag = m.elaborate(platform=None)
self.assertEqual(m._generated["fsm"].state.init, 1)
self.maxDiff = 10000
self.assertRepr(frag.statements["comb"], """
(
(eq (sig b) (sig))
(eq (sig a) (sig))
(eq (sig) (== (sig fsm_state) (const 1'd0)))
(eq (sig) (== (sig fsm_state) (const 1'd1)))
)
""")
def test_FSM_empty(self):
m = Module()
with m.FSM():
pass
self.assertEqual(m._statements, {})
def test_FSM_wrong_domain(self):
m = Module()
with self.assertRaisesRegex(ValueError,
r"^FSM may not be driven by the 'comb' domain$"):
with m.FSM(domain="comb"):
pass
def test_FSM_wrong_undefined(self):
m = Module()
with self.assertRaisesRegex(NameError,
r"^FSM state 'FOO' is referenced but not defined$"):
with m.FSM() as fsm:
fsm.ongoing("FOO")
def test_FSM_wrong_redefined(self):
m = Module()
with m.FSM():
with m.State("FOO"):
pass
with self.assertRaisesRegex(NameError,
r"^FSM state 'FOO' is already defined$"):
with m.State("FOO"):
pass
def test_FSM_wrong_next(self):
m = Module()
with self.assertRaisesRegex(SyntaxError,
r"^Only assignment to `m\.next` is permitted$"):
m.next
with self.assertRaisesRegex(SyntaxError,
r"^`m\.next = <\.\.\.>` is only permitted inside an FSM state$"):
m.next = "FOO"
with self.assertRaisesRegex(SyntaxError,
r"^`m\.next = <\.\.\.>` is only permitted inside an FSM state$"):
with m.FSM():
m.next = "FOO"
def test_If_inside_FSM_wrong(self):
m = Module()
with m.FSM():
with m.State("FOO"):
pass
with self.assertRaisesRegex(SyntaxError,
(r"^If is not permitted directly inside of FSM; "
r"it is permitted inside of FSM State$")):
with m.If(self.s2):
pass
def test_State_outside_FSM_wrong(self):
m = Module()
with self.assertRaisesRegex(SyntaxError,
r"^FSM State is not permitted outside of FSM"):
with m.State("FOO"):
pass
def test_FSM_State_wrong_nested(self):
m = Module()
with m.FSM():
with m.State("FOO"):
with self.assertRaisesRegex(SyntaxError,
r"^FSM State is not permitted outside of FSM"):
with m.State("BAR"):
pass
def test_auto_pop_ctrl(self):
m = Module()
with m.If(self.w1):
m.d.comb += self.c1.eq(1)
m.d.comb += self.c2.eq(1)
self.assertRepr(m._statements["comb"], """
(
(switch (cat (b (sig w1)))
(case 1 (eq (sig c1) (const 1'd1)))
)
(eq (sig c2) (const 1'd1))
)
""")
def test_submodule_anon(self):
m1 = Module()
m2 = Module()
m1.submodules += m2
self.assertEqual(len(m1._anon_submodules), 1)
self.assertEqual(m1._anon_submodules[0][0], m2)
self.assertEqual(m1._named_submodules, {})
def test_submodule_anon_multi(self):
m1 = Module()
m2 = Module()
m3 = Module()
m1.submodules += m2, m3
self.assertEqual(len(m1._anon_submodules), 2)
self.assertEqual(m1._anon_submodules[0][0], m2)
self.assertEqual(m1._anon_submodules[1][0], m3)
self.assertEqual(m1._named_submodules, {})
def test_submodule_named(self):
m1 = Module()
m2 = Module()
m1.submodules.foo = m2
self.assertEqual(m1._anon_submodules, [])
self.assertEqual(m1._named_submodules.keys(), {"foo"})
self.assertEqual(m1._named_submodules["foo"][0], m2)
def test_submodule_named_index(self):
m1 = Module()
m2 = Module()
m1.submodules["foo"] = m2
self.assertEqual(m1._anon_submodules, [])
self.assertEqual(m1._named_submodules.keys(), {"foo"})
self.assertEqual(m1._named_submodules["foo"][0], m2)
def test_submodule_wrong(self):
m = Module()
with self.assertRaisesRegex(TypeError,
r"^Trying to add 1, which does not implement \.elaborate\(\), as a submodule$"):
m.submodules.foo = 1
with self.assertRaisesRegex(TypeError,
r"^Trying to add 1, which does not implement \.elaborate\(\), as a submodule$"):
m.submodules += 1
def test_submodule_named_conflict(self):
m1 = Module()
m2 = Module()
m1.submodules.foo = m2
with self.assertRaisesRegex(NameError, r"^Submodule named 'foo' already exists$"):
m1.submodules.foo = m2
def test_submodule_named_empty(self):
m1 = Module()
m2 = Module()
with self.assertRaisesRegex(NameError, r"^Submodule name must not be empty$"):
m1.submodules[""] = m2
def test_submodule_get(self):
m1 = Module()
m2 = Module()
m1.submodules.foo = m2
m3 = m1.submodules.foo
self.assertEqual(m2, m3)
def test_submodule_get_index(self):
m1 = Module()
m2 = Module()
m1.submodules["foo"] = m2
m3 = m1.submodules["foo"]
self.assertEqual(m2, m3)
def test_submodule_get_unset(self):
m1 = Module()
with self.assertRaisesRegex(AttributeError, r"^No submodule named 'foo' exists$"):
m2 = m1.submodules.foo
with self.assertRaisesRegex(AttributeError, r"^No submodule named 'foo' exists$"):
m2 = m1.submodules["foo"]
def test_domain_named_implicit(self):
m = Module()
m.domains += ClockDomain("sync")
self.assertEqual(len(m._domains), 1)
def test_domain_named_explicit(self):
m = Module()
m.domains.foo = ClockDomain()
self.assertEqual(len(m._domains), 1)
self.assertEqual(m._domains["foo"].name, "foo")
def test_domain_add_wrong(self):
m = Module()
with self.assertRaisesRegex(TypeError,
r"^Only clock domains may be added to `m\.domains`, not 1$"):
m.domains.foo = 1
with self.assertRaisesRegex(TypeError,
r"^Only clock domains may be added to `m\.domains`, not 1$"):
m.domains += 1
def test_domain_add_wrong_name(self):
m = Module()
with self.assertRaisesRegex(NameError,
r"^Clock domain name 'bar' must match name in `m\.domains\.foo = \.\.\.` syntax$"):
m.domains.foo = ClockDomain("bar")
def test_domain_add_wrong_duplicate(self):
m = Module()
m.domains += ClockDomain("foo")
with self.assertRaisesRegex(NameError,
r"^Clock domain named 'foo' already exists$"):
m.domains += ClockDomain("foo")
def test_lower(self):
m1 = Module()
m1.d.comb += self.c1.eq(self.s1)
m2 = Module()
m2.d.comb += self.c2.eq(self.s2)
m2.d.sync += self.c3.eq(self.s3)
m1.submodules.foo = m2
f1 = m1.elaborate(platform=None)
self.assertRepr(f1.statements["comb"], """
(
(eq (sig c1) (sig s1))
)
""")
self.assertEqual(len(f1.subfragments), 1)
(f2, f2_name, _), = f1.subfragments
self.assertEqual(f2_name, "foo")
self.assertRepr(f2.statements["comb"], """
(
(eq (sig c2) (sig s2))
)
""")
self.assertRepr(f2.statements["sync"], """
(
(eq (sig c3) (sig s3))
)
""")
self.assertEqual(len(f2.subfragments), 0)
def test_bug_1331(self):
m = Module()
with self.assertRaisesRegex(NameError,
r"^Domain name should not be prefixed with 'cd_' in `m.domains`, "
r"use `m.domains.rx = ...` instead$"):
m.domains.cd_rx = ClockDomain()
def test_freeze(self):
a = Signal()
m = Module()
f = Fragment.get(m, None)
with self.assertRaisesRegex(AlreadyElaborated,
r"^Cannot modify a module that has already been elaborated$"):
m.d.comb += a.eq(1)
with self.assertRaisesRegex(AlreadyElaborated,
r"^Cannot modify a module that has already been elaborated$"):
with m.If(a):
pass
with self.assertRaisesRegex(AlreadyElaborated,
r"^Cannot modify a module that has already been elaborated$"):
with m.Switch(a):
pass
with self.assertRaisesRegex(AlreadyElaborated,
r"^Cannot modify a module that has already been elaborated$"):
with m.FSM():
pass
with self.assertRaisesRegex(AlreadyElaborated,
r"^Cannot modify a module that has already been elaborated$"):
m.submodules.a = Module()
with self.assertRaisesRegex(AlreadyElaborated,
r"^Cannot modify a module that has already been elaborated$"):
m.domains.sync = ClockDomain()