amaranth/nmigen/back/pysim.py
2018-12-14 12:22:03 +00:00

539 lines
21 KiB
Python

import math
from vcd import VCDWriter
from vcd.gtkw import GTKWSave
from ..tools import flatten
from ..fhdl.ast import *
from ..fhdl.xfrm import ValueTransformer, StatementTransformer
__all__ = ["Simulator", "Delay", "Tick", "Passive", "DeadlineError"]
class DeadlineError(Exception):
pass
class _State:
__slots__ = ("curr", "curr_dirty", "next", "next_dirty")
def __init__(self):
self.curr = ValueDict()
self.next = ValueDict()
self.curr_dirty = ValueSet()
self.next_dirty = ValueSet()
def get(self, signal):
return self.curr[signal]
def set_curr(self, signal, value):
assert isinstance(value, int)
if self.curr[signal] != value:
self.curr_dirty.add(signal)
self.curr[signal] = value
def set_next(self, signal, value):
assert isinstance(value, int)
if self.next[signal] != value:
self.next_dirty.add(signal)
self.next[signal] = value
def commit(self, signal):
old_value = self.curr[signal]
if self.curr[signal] != self.next[signal]:
self.next_dirty.remove(signal)
self.curr_dirty.add(signal)
self.curr[signal] = self.next[signal]
new_value = self.curr[signal]
return old_value, new_value
def iter_dirty(self):
dirty, self.dirty = self.dirty, ValueSet()
for signal in dirty:
yield signal, self.curr[signal], self.next[signal]
normalize = Const.normalize
class _RHSValueCompiler(ValueTransformer):
def __init__(self, sensitivity):
self.sensitivity = sensitivity
def on_Const(self, value):
return lambda state: value.value
def on_Signal(self, value):
self.sensitivity.add(value)
return lambda state: state.get(value)
def on_ClockSignal(self, value):
raise NotImplementedError # :nocov:
def on_ResetSignal(self, value):
raise NotImplementedError # :nocov:
def on_Operator(self, value):
shape = value.shape()
if len(value.operands) == 1:
arg, = map(self, value.operands)
if value.op == "~":
return lambda state: normalize(~arg(state), shape)
if value.op == "-":
return lambda state: normalize(-arg(state), shape)
elif len(value.operands) == 2:
lhs, rhs = map(self, value.operands)
if value.op == "+":
return lambda state: normalize(lhs(state) + rhs(state), shape)
if value.op == "-":
return lambda state: normalize(lhs(state) - rhs(state), shape)
if value.op == "&":
return lambda state: normalize(lhs(state) & rhs(state), shape)
if value.op == "|":
return lambda state: normalize(lhs(state) | rhs(state), shape)
if value.op == "^":
return lambda state: normalize(lhs(state) ^ rhs(state), shape)
if value.op == "==":
return lambda state: normalize(lhs(state) == rhs(state), shape)
elif len(value.operands) == 3:
if value.op == "m":
sel, val1, val0 = map(self, value.operands)
return lambda state: val1(state) if sel(state) else val0(state)
raise NotImplementedError("Operator '{}' not implemented".format(value.op))
def on_Slice(self, value):
shape = value.shape()
arg = self(value.value)
shift = value.start
mask = (1 << (value.end - value.start)) - 1
return lambda state: normalize((arg(state) >> shift) & mask, shape)
def on_Part(self, value):
raise NotImplementedError
def on_Cat(self, value):
shape = value.shape()
parts = []
offset = 0
for opnd in value.operands:
parts.append((offset, (1 << len(opnd)) - 1, self(opnd)))
offset += len(opnd)
def eval(state):
result = 0
for offset, mask, opnd in parts:
result |= (opnd(state) & mask) << offset
return normalize(result, shape)
return eval
def on_Repl(self, value):
shape = value.shape()
offset = len(value.value)
mask = (1 << len(value.value)) - 1
count = value.count
opnd = self(value.value)
def eval(state):
result = 0
for _ in range(count):
result <<= offset
result |= opnd(state)
return normalize(result, shape)
return eval
class _StatementCompiler(StatementTransformer):
def __init__(self):
self.sensitivity = ValueSet()
self.rhs_compiler = _RHSValueCompiler(self.sensitivity)
def lhs_compiler(self, value):
# TODO
return lambda state, arg: state.set_next(value, arg)
def on_Assign(self, stmt):
assert isinstance(stmt.lhs, Signal)
shape = stmt.lhs.shape()
lhs = self.lhs_compiler(stmt.lhs)
rhs = self.rhs_compiler(stmt.rhs)
def run(state):
lhs(state, normalize(rhs(state), shape))
return run
def on_Switch(self, stmt):
test = self.rhs_compiler(stmt.test)
cases = []
for value, stmts in stmt.cases.items():
if "-" in value:
mask = "".join("0" if b == "-" else "1" for b in value)
value = "".join("0" if b == "-" else b for b in value)
else:
mask = "1" * len(value)
mask = int(mask, 2)
value = int(value, 2)
def make_test(mask, value):
return lambda test: test & mask == value
cases.append((make_test(mask, value), self.on_statements(stmts)))
def run(state):
test_value = test(state)
for check, body in cases:
if check(test_value):
body(state)
return
return run
def on_statements(self, stmts):
stmts = [self.on_statement(stmt) for stmt in stmts]
def run(state):
for stmt in stmts:
stmt(state)
return run
class Simulator:
def __init__(self, fragment, vcd_file=None, gtkw_file=None, gtkw_signals=()):
self._fragments = {} # fragment -> hierarchy
self._domains = {} # str/domain -> ClockDomain
self._domain_triggers = ValueDict() # Signal -> str/domain
self._domain_signals = {} # str/domain -> {Signal}
self._signals = ValueSet() # {Signal}
self._comb_signals = ValueSet() # {Signal}
self._sync_signals = ValueSet() # {Signal}
self._user_signals = ValueSet() # {Signal}
self._started = False
self._timestamp = 0.
self._epsilon = 1e-10
self._fastest_clock = self._epsilon
self._state = _State()
self._processes = set() # {process}
self._passive = set() # {process}
self._suspended = set() # {process}
self._wait_deadline = {} # process -> float/timestamp
self._wait_tick = {} # process -> str/domain
self._funclets = ValueDict() # Signal -> set(lambda)
self._vcd_file = vcd_file
self._vcd_writer = None
self._vcd_signals = ValueDict() # signal -> set(vcd_signal)
self._vcd_names = ValueDict() # signal -> str/name
self._gtkw_file = gtkw_file
self._gtkw_signals = gtkw_signals
fragment = fragment.prepare()
def add_fragment(fragment, hierarchy=("top",)):
self._fragments[fragment] = hierarchy
for subfragment, name in fragment.subfragments:
add_fragment(subfragment, (*hierarchy, name))
add_fragment(fragment)
self._domains = fragment.domains
for domain, cd in self._domains.items():
self._domain_triggers[cd.clk] = domain
if cd.rst is not None:
self._domain_triggers[cd.rst] = domain
self._domain_signals[domain] = ValueSet()
def add_process(self, process):
self._processes.add(process)
def add_clock(self, domain, period):
if self._fastest_clock == self._epsilon or period < self._fastest_clock:
self._fastest_clock = period
half_period = period / 2
clk = self._domains[domain].clk
def clk_process():
yield Passive()
yield Delay(half_period)
while True:
yield clk.eq(1)
yield Delay(half_period)
yield clk.eq(0)
yield Delay(half_period)
self.add_process(clk_process())
def add_sync_process(self, process, domain="sync"):
def sync_process():
try:
result = process.send(None)
while True:
result = process.send((yield (result or Tick(domain))))
except StopIteration:
pass
self.add_process(sync_process())
def __enter__(self):
if self._vcd_file:
self._vcd_writer = VCDWriter(self._vcd_file, timescale="100 ps",
comment="Generated by nMigen")
for fragment in self._fragments:
for signal in fragment.iter_signals():
self._signals.add(signal)
self._state.curr[signal] = self._state.next[signal] = \
normalize(signal.reset, signal.shape())
self._state.curr_dirty.add(signal)
if signal not in self._vcd_signals:
self._vcd_signals[signal] = set()
for subfragment, name in fragment.subfragments:
if signal in subfragment.ports:
var_name = "{}_{}".format(name, signal.name)
break
else:
var_name = signal.name
if signal.decoder:
var_type = "string"
var_size = 1
var_init = signal.decoder(signal.reset).replace(" ", "_")
else:
var_type = "wire"
var_size = signal.nbits
var_init = signal.reset
suffix = None
while True:
try:
if suffix is None:
var_name_suffix = var_name
else:
var_name_suffix = "{}${}".format(var_name, suffix)
self._vcd_signals[signal].add(self._vcd_writer.register_var(
scope=".".join(self._fragments[fragment]), name=var_name_suffix,
var_type=var_type, size=var_size, init=var_init))
if signal not in self._vcd_names:
self._vcd_names[signal] = \
".".join(self._fragments[fragment] + (var_name_suffix,))
break
except KeyError:
suffix = (suffix or 0) + 1
for domain, signals in fragment.drivers.items():
if domain is None:
self._comb_signals.update(signals)
else:
self._sync_signals.update(signals)
self._domain_signals[domain].update(signals)
statements = []
for signal in fragment.iter_comb():
statements.append(signal.eq(signal.reset))
statements += fragment.statements
def add_funclet(signal, funclet):
if signal not in self._funclets:
self._funclets[signal] = set()
self._funclets[signal].add(funclet)
compiler = _StatementCompiler()
funclet = compiler(statements)
for signal in compiler.sensitivity:
add_funclet(signal, funclet)
for domain, cd in fragment.domains.items():
add_funclet(cd.clk, funclet)
if cd.rst is not None:
add_funclet(cd.rst, funclet)
self._user_signals = self._signals - self._comb_signals - self._sync_signals
def _update_dirty_signals(self):
"""Perform the statement part of IR processes (aka RTLIL case)."""
# First, for all dirty signals, use sensitivity lists to determine the set of fragments
# that need their statements to be reevaluated because the signals changed at the previous
# delta cycle.
funclets = set()
while self._state.curr_dirty:
signal = self._state.curr_dirty.pop()
if signal in self._funclets:
funclets.update(self._funclets[signal])
# Second, compute the values of all signals at the start of the next delta cycle, by
# running precompiled statements.
for funclet in funclets:
funclet(self._state)
def _commit_signal(self, signal, domains):
"""Perform the driver part of IR processes (aka RTLIL sync), for individual signals."""
# Take the computed value (at the start of this delta cycle) of a signal (that could have
# come from an IR process that ran earlier, or modified by a simulator process) and update
# the value for this delta cycle.
old, new = self._state.commit(signal)
# If the signal is a clock that triggers synchronous logic, record that fact.
if (old, new) == (0, 1) and signal in self._domain_triggers:
domains.add(self._domain_triggers[signal])
if self._vcd_writer and old != new:
# Finally, dump the new value to the VCD file.
for vcd_signal in self._vcd_signals[signal]:
if signal.decoder:
var_value = signal.decoder(new).replace(" ", "_")
else:
var_value = new
self._vcd_writer.change(vcd_signal, self._timestamp / self._epsilon, var_value)
def _commit_comb_signals(self, domains):
"""Perform the comb part of IR processes (aka RTLIL always)."""
# Take the computed value (at the start of this delta cycle) of every comb signal and
# update the value for this delta cycle.
for signal in self._state.next_dirty:
if signal in self._comb_signals or signal in self._user_signals:
self._commit_signal(signal, domains)
def _commit_sync_signals(self, domains):
"""Perform the sync part of IR processes (aka RTLIL posedge)."""
# At entry, `domains` contains a list of every simultaneously triggered sync update.
while domains:
# Advance the timeline a bit (purely for observational purposes) and commit all of them
# at the same timestamp.
self._timestamp += self._epsilon
curr_domains, domains = domains, set()
while curr_domains:
domain = curr_domains.pop()
# Take the computed value (at the start of this delta cycle) of every sync signal
# in this domain and update the value for this delta cycle. This can trigger more
# synchronous logic, so record that.
for signal in self._state.next_dirty:
if signal in self._domain_signals[domain]:
self._commit_signal(signal, domains)
# Wake up any simulator processes that wait for a domain tick.
for process, wait_domain in list(self._wait_tick.items()):
if domain == wait_domain:
del self._wait_tick[process]
self._suspended.remove(process)
# Unless handling synchronous logic above has triggered more synchronous logic (which
# can happen e.g. if a domain is clocked off a clock divisor in fabric), we're done.
# Otherwise, do one more round of updates.
def _run_process(self, process):
try:
stmt = process.send(None)
except StopIteration:
self._processes.remove(process)
self._passive.discard(process)
return
if isinstance(stmt, Delay):
self._wait_deadline[process] = self._timestamp + stmt.interval
self._suspended.add(process)
elif isinstance(stmt, Tick):
self._wait_tick[process] = stmt.domain
self._suspended.add(process)
elif isinstance(stmt, Passive):
self._passive.add(process)
elif isinstance(stmt, Assign):
lhs_signals = stmt.lhs._lhs_signals()
for signal in lhs_signals:
if not signal in self._signals:
raise ValueError("Process {!r} sent a request to set signal '{!r}', "
"which is not a part of simulation"
.format(process, signal))
if signal in self._comb_signals:
raise ValueError("Process {!r} sent a request to set signal '{!r}', "
"which is a part of combinatorial assignment in simulation"
.format(process, signal))
funclet = _StatementCompiler()(stmt)
funclet(self._state)
domains = set()
for signal in lhs_signals:
self._commit_signal(signal, domains)
self._commit_sync_signals(domains)
else:
raise TypeError("Received unsupported statement '{!r}' from process {!r}"
.format(stmt, process))
def step(self, run_passive=False):
deadline = None
if self._wait_deadline:
# We might run some delta cycles, and we have simulator processes waiting on
# a deadline. Take care to not exceed the closest deadline.
deadline = min(self._wait_deadline.values())
# Are there any delta cycles we should run?
while self._state.curr_dirty:
self._timestamp += self._epsilon
if deadline is not None and self._timestamp >= deadline:
# Oops, we blew the deadline. We *could* run the processes now, but this is
# virtually certainly a logic loop and a design bug, so bail out instead.d
raise DeadlineError("Delta cycles exceeded process deadline; combinatorial loop?")
domains = set()
self._update_dirty_signals()
self._commit_comb_signals(domains)
self._commit_sync_signals(domains)
# Are there any processes that haven't had a chance to run yet?
if len(self._processes) > len(self._suspended):
# Schedule an arbitrary one.
process = (self._processes - set(self._suspended)).pop()
self._run_process(process)
return True
# All processes are suspended. Are any of them active?
if len(self._processes) > len(self._passive) or run_passive:
# Are any of them suspended before a deadline?
if self._wait_deadline:
# Schedule the one with the lowest deadline.
process, deadline = min(self._wait_deadline.items(), key=lambda x: x[1])
del self._wait_deadline[process]
self._suspended.remove(process)
self._timestamp = deadline
self._run_process(process)
return True
# No processes, or all processes are passive. Nothing to do!
return False
def run_until(self, deadline, run_passive=False):
while self._timestamp < deadline:
if not self.step(run_passive):
return False
return True
def __exit__(self, *args):
if self._vcd_writer:
self._vcd_writer.close(self._timestamp / self._epsilon)
if self._vcd_file and self._gtkw_file:
gtkw_save = GTKWSave(self._gtkw_file)
if hasattr(self._vcd_file, "name"):
gtkw_save.dumpfile(self._vcd_file.name)
if hasattr(self._vcd_file, "tell"):
gtkw_save.dumpfile_size(self._vcd_file.tell())
gtkw_save.treeopen("top")
gtkw_save.zoom_markers(math.log(self._epsilon / self._fastest_clock) - 14)
for domain, cd in self._domains.items():
with gtkw_save.group("d.{}".format(domain)):
if cd.rst is not None:
gtkw_save.trace(self._vcd_names[cd.rst])
gtkw_save.trace(self._vcd_names[cd.clk])
for signal in self._gtkw_signals:
if signal in self._vcd_names:
if len(signal) > 1:
suffix = "[{}:0]".format(len(signal) - 1)
else:
suffix = ""
gtkw_save.trace(self._vcd_names[signal] + suffix)