amaranth/nmigen/back/rtlil.py
2018-12-20 23:40:40 +00:00

670 lines
23 KiB
Python

import io
import textwrap
from collections import defaultdict, OrderedDict
from contextlib import contextmanager
from ..hdl import ast, ir, xfrm
class _Namer:
def __init__(self):
super().__init__()
self._index = 0
self._names = set()
def _make_name(self, name, local):
if name is None:
self._index += 1
name = "${}".format(self._index)
elif not local and name[0] not in "\\$":
name = "\\{}".format(name)
while name in self._names:
self._index += 1
name = "{}${}".format(name, self._index)
self._names.add(name)
return name
class _Bufferer:
_escape_map = str.maketrans({
"\"": "\\\"",
"\\": "\\\\",
"\t": "\\t",
"\r": "\\r",
"\n": "\\n",
})
def __init__(self):
super().__init__()
self._buffer = io.StringIO()
def __str__(self):
return self._buffer.getvalue()
def _append(self, fmt, *args, **kwargs):
self._buffer.write(fmt.format(*args, **kwargs))
def attribute(self, name, value, indent=0):
if isinstance(value, str):
self._append("{}attribute \\{} \"{}\"\n",
" " * indent, name, value.translate(self._escape_map))
else:
self._append("{}attribute \\{} {}\n",
" " * indent, name, int(value))
def _src(self, src):
if src:
self.attribute("src", src)
class _Builder(_Namer, _Bufferer):
def module(self, name=None, attrs={}):
name = self._make_name(name, local=False)
return _ModuleBuilder(self, name, attrs)
class _ModuleBuilder(_Namer, _Bufferer):
def __init__(self, rtlil, name, attrs):
super().__init__()
self.rtlil = rtlil
self.name = name
self.attrs = {"generator": "nMigen"}
self.attrs.update(attrs)
def __enter__(self):
for name, value in self.attrs.items():
self.attribute(name, value, indent=0)
self._append("module {}\n", self.name)
return self
def __exit__(self, *args):
self._append("end\n")
self.rtlil._buffer.write(str(self))
def attribute(self, name, value, indent=1):
super().attribute(name, value, indent)
def wire(self, width, port_id=None, port_kind=None, name=None, src=""):
self._src(src)
name = self._make_name(name, local=False)
if port_id is None:
self._append(" wire width {} {}\n", width, name)
else:
assert port_kind in ("input", "output", "inout")
self._append(" wire width {} {} {} {}\n", width, port_kind, port_id, name)
return name
def connect(self, lhs, rhs):
self._append(" connect {} {}\n", lhs, rhs)
def cell(self, kind, name=None, params={}, ports={}, src=""):
self._src(src)
name = self._make_name(name, local=True)
self._append(" cell {} {}\n", kind, name)
for param, value in params.items():
if isinstance(value, str):
value = repr(value)
else:
value = int(value)
self._append(" parameter \\{} {}\n", param, value)
for port, wire in ports.items():
self._append(" connect {} {}\n", port, wire)
self._append(" end\n")
return name
def process(self, name=None, src=""):
name = self._make_name(name, local=True)
return _ProcessBuilder(self, name, src)
class _ProcessBuilder(_Bufferer):
def __init__(self, rtlil, name, src):
super().__init__()
self.rtlil = rtlil
self.name = name
self.src = src
def __enter__(self):
self._src(self.src)
self._append(" process {}\n", self.name)
return self
def __exit__(self, *args):
self._append(" end\n")
self.rtlil._buffer.write(str(self))
def case(self):
return _CaseBuilder(self, indent=2)
def sync(self, kind, cond=None):
return _SyncBuilder(self, kind, cond)
class _CaseBuilder:
def __init__(self, rtlil, indent):
self.rtlil = rtlil
self.indent = indent
def __enter__(self):
return self
def __exit__(self, *args):
pass
def assign(self, lhs, rhs):
self.rtlil._append("{}assign {} {}\n", " " * self.indent, lhs, rhs)
def switch(self, cond):
return _SwitchBuilder(self.rtlil, cond, self.indent)
class _SwitchBuilder:
def __init__(self, rtlil, cond, indent):
self.rtlil = rtlil
self.cond = cond
self.indent = indent
def __enter__(self):
self.rtlil._append("{}switch {}\n", " " * self.indent, self.cond)
return self
def __exit__(self, *args):
self.rtlil._append("{}end\n", " " * self.indent)
def case(self, value=None):
if value is None:
self.rtlil._append("{}case\n", " " * (self.indent + 1))
else:
self.rtlil._append("{}case {}'{}\n", " " * (self.indent + 1),
len(value), value)
return _CaseBuilder(self.rtlil, self.indent + 2)
class _SyncBuilder:
def __init__(self, rtlil, kind, cond):
self.rtlil = rtlil
self.kind = kind
self.cond = cond
def __enter__(self):
if self.cond is None:
self.rtlil._append(" sync {}\n", self.kind)
else:
self.rtlil._append(" sync {} {}\n", self.kind, self.cond)
return self
def __exit__(self, *args):
pass
def update(self, lhs, rhs):
self.rtlil._append(" update {} {}\n", lhs, rhs)
def src(src_loc):
file, line = src_loc
return "{}:{}".format(file, line)
class LegalizeValue(Exception):
def __init__(self, value, branches):
self.value = value
self.branches = list(branches)
class _ValueCompilerState:
def __init__(self, rtlil):
self.rtlil = rtlil
self.wires = ast.SignalDict()
self.driven = ast.SignalDict()
self.ports = ast.SignalDict()
self.expansions = ast.ValueDict()
def add_driven(self, signal, sync):
self.driven[signal] = sync
def add_port(self, signal, kind):
assert kind in ("i", "o", "io")
if kind == "i":
kind = "input"
elif kind == "o":
kind = "output"
elif kind == "io":
kind = "inout"
self.ports[signal] = (len(self.ports), kind)
def resolve(self, signal, prefix=None):
if signal in self.wires:
return self.wires[signal]
if signal in self.ports:
port_id, port_kind = self.ports[signal]
else:
port_id = port_kind = None
if prefix is not None:
wire_name = "{}_{}".format(prefix, signal.name)
else:
wire_name = signal.name
for attr_name, attr_signal in signal.attrs.items():
self.rtlil.attribute(attr_name, attr_signal)
wire_curr = self.rtlil.wire(width=signal.nbits, name=wire_name,
port_id=port_id, port_kind=port_kind,
src=src(signal.src_loc))
if signal in self.driven:
wire_next = self.rtlil.wire(width=signal.nbits, name=wire_curr + "$next",
src=src(signal.src_loc))
else:
wire_next = None
self.wires[signal] = (wire_curr, wire_next)
return wire_curr, wire_next
def resolve_curr(self, signal, prefix=None):
wire_curr, wire_next = self.resolve(signal, prefix)
return wire_curr
def expand(self, value):
if not self.expansions:
return value
return self.expansions.get(value, value)
@contextmanager
def expand_to(self, value, expansion):
try:
assert value not in self.expansions
self.expansions[value] = expansion
yield
finally:
del self.expansions[value]
class _ValueCompiler(xfrm.AbstractValueTransformer):
def __init__(self, state):
self.s = state
def on_value(self, value):
return super().on_value(self.s.expand(value))
def on_unknown(self, value):
if value is None:
return None
else:
super().on_unknown(value)
def on_ClockSignal(self, value):
raise NotImplementedError # :nocov:
def on_ResetSignal(self, value):
raise NotImplementedError # :nocov:
def on_Cat(self, value):
return "{{ {} }}".format(" ".join(reversed([self(o) for o in value.operands])))
def _prepare_value_for_Slice(self, value):
raise NotImplementedError # :nocov:
def on_Slice(self, value):
if value.start == 0 and value.end == len(value.value):
return self(value.value)
sigspec = self._prepare_value_for_Slice(value.value)
if value.start + 1 == value.end:
return "{} [{}]".format(sigspec, value.start)
else:
return "{} [{}:{}]".format(sigspec, value.end - 1, value.start)
def on_ArrayProxy(self, value):
index = self.s.expand(value.index)
if isinstance(index, ast.Const):
if index.value < len(value.elems):
return self(value.elems[index.value])
else:
return self(value.elems[-1])
else:
raise LegalizeValue(value.index, range(len(value.elems)))
class _RHSValueCompiler(_ValueCompiler):
operator_map = {
(1, "~"): "$not",
(1, "-"): "$neg",
(1, "b"): "$reduce_bool",
(2, "+"): "$add",
(2, "-"): "$sub",
(2, "*"): "$mul",
(2, "/"): "$div",
(2, "%"): "$mod",
(2, "**"): "$pow",
(2, "<<"): "$sshl",
(2, ">>"): "$sshr",
(2, "&"): "$and",
(2, "^"): "$xor",
(2, "|"): "$or",
(2, "=="): "$eq",
(2, "!="): "$ne",
(2, "<"): "$lt",
(2, "<="): "$le",
(2, ">"): "$gt",
(2, ">="): "$ge",
(3, "m"): "$mux",
}
def on_Const(self, value):
if isinstance(value.value, str):
return "{}'{}".format(value.nbits, value.value)
else:
return "{}'{:b}".format(value.nbits, value.value)
def on_Signal(self, value):
wire_curr, wire_next = self.s.resolve(value)
return wire_curr
def on_Operator_unary(self, value):
arg, = value.operands
arg_bits, arg_sign = arg.shape()
res_bits, res_sign = value.shape()
res = self.s.rtlil.wire(width=res_bits)
self.s.rtlil.cell(self.operator_map[(1, value.op)], ports={
"\\A": self(arg),
"\\Y": res,
}, params={
"A_SIGNED": arg_sign,
"A_WIDTH": arg_bits,
"Y_WIDTH": res_bits,
}, src=src(value.src_loc))
return res
def match_shape(self, value, new_bits, new_sign):
if isinstance(value, ast.Const):
return self(ast.Const(value.value, (new_bits, new_sign)))
value_bits, value_sign = value.shape()
if new_bits <= value_bits:
return self(ast.Slice(value, 0, new_bits))
res = self.s.rtlil.wire(width=new_bits)
self.s.rtlil.cell("$pos", ports={
"\\A": self(value),
"\\Y": res,
}, params={
"A_SIGNED": value_sign,
"A_WIDTH": value_bits,
"Y_WIDTH": new_bits,
}, src=src(value.src_loc))
return res
def on_Operator_binary(self, value):
lhs, rhs = value.operands
lhs_bits, lhs_sign = lhs.shape()
rhs_bits, rhs_sign = rhs.shape()
if lhs_sign == rhs_sign:
lhs_wire = self(lhs)
rhs_wire = self(rhs)
else:
lhs_sign = rhs_sign = True
lhs_bits = rhs_bits = max(lhs_bits, rhs_bits)
lhs_wire = self.match_shape(lhs, lhs_bits, lhs_sign)
rhs_wire = self.match_shape(rhs, rhs_bits, rhs_sign)
res_bits, res_sign = value.shape()
res = self.s.rtlil.wire(width=res_bits)
self.s.rtlil.cell(self.operator_map[(2, value.op)], ports={
"\\A": lhs_wire,
"\\B": rhs_wire,
"\\Y": res,
}, params={
"A_SIGNED": lhs_sign,
"A_WIDTH": lhs_bits,
"B_SIGNED": rhs_sign,
"B_WIDTH": rhs_bits,
"Y_WIDTH": res_bits,
}, src=src(value.src_loc))
return res
def on_Operator_mux(self, value):
sel, lhs, rhs = value.operands
lhs_bits, lhs_sign = lhs.shape()
rhs_bits, rhs_sign = rhs.shape()
res_bits, res_sign = value.shape()
lhs_bits = rhs_bits = res_bits = max(lhs_bits, rhs_bits, res_bits)
lhs_wire = self.match_shape(lhs, lhs_bits, lhs_sign)
rhs_wire = self.match_shape(rhs, rhs_bits, rhs_sign)
res = self.s.rtlil.wire(width=res_bits)
self.s.rtlil.cell("$mux", ports={
"\\A": lhs_wire,
"\\B": rhs_wire,
"\\S": self(sel),
"\\Y": res,
}, params={
"WIDTH": res_bits
}, src=src(value.src_loc))
return res
def on_Operator(self, value):
if len(value.operands) == 1:
return self.on_Operator_unary(value)
elif len(value.operands) == 2:
return self.on_Operator_binary(value)
elif len(value.operands) == 3:
assert value.op == "m"
return self.on_Operator_mux(value)
else:
raise TypeError # :nocov:
def _prepare_value_for_Slice(self, value):
if isinstance(value, (ast.Signal, ast.Slice, ast.Cat)):
sigspec = self(value)
else:
sigspec = self.s.rtlil.wire(len(value))
self.s.rtlil.connect(sigspec, self(value))
return sigspec
def on_Part(self, value):
lhs, rhs = value.value, value.offset
lhs_bits, lhs_sign = lhs.shape()
rhs_bits, rhs_sign = rhs.shape()
res_bits, res_sign = value.shape()
res = self.s.rtlil.wire(width=res_bits)
# Note: Verilog's x[o+:w] construct produces a $shiftx cell, not a $shift cell.
# However, Migen's semantics defines the out-of-range bits to be zero, so it is correct
# to use a $shift cell here instead, even though it produces less idiomatic Verilog.
self.s.rtlil.cell("$shift", ports={
"\\A": self(lhs),
"\\B": self(rhs),
"\\Y": res,
}, params={
"A_SIGNED": lhs_sign,
"A_WIDTH": lhs_bits,
"B_SIGNED": rhs_sign,
"B_WIDTH": rhs_bits,
"Y_WIDTH": res_bits,
}, src=src(value.src_loc))
return res
def on_Repl(self, value):
return "{{ {} }}".format(" ".join(self(value.value) for _ in range(value.count)))
class _LHSValueCompiler(_ValueCompiler):
def on_Const(self, value):
raise TypeError # :nocov:
def on_Operator(self, value):
raise TypeError # :nocov:
def on_Signal(self, value):
wire_curr, wire_next = self.s.resolve(value)
if wire_next is None:
raise ValueError("No LHS wire for non-driven signal {}".format(repr(value)))
return wire_next
def _prepare_value_for_Slice(self, value):
assert isinstance(value, (ast.Signal, ast.Slice, ast.Cat))
return self(value)
def on_Part(self, value):
offset = self.s.expand(value.offset)
if isinstance(offset, ast.Const):
return self(ast.Slice(value.value, offset.value, offset.value + value.width))
else:
raise LegalizeValue(value.offset, range((1 << len(value.offset)) - 1))
def on_Repl(self, value):
raise TypeError # :nocov:
class _StatementCompiler(xfrm.AbstractStatementTransformer):
def __init__(self, state, rhs_compiler, lhs_compiler):
self.state = state
self.rhs_compiler = rhs_compiler
self.lhs_compiler = lhs_compiler
self._case = None
@contextmanager
def case(self, switch, value):
try:
old_case = self._case
with switch.case(value) as self._case:
yield
finally:
self._case = old_case
def on_Assign(self, stmt):
if isinstance(stmt, ast.Assign):
lhs_bits, lhs_sign = stmt.lhs.shape()
rhs_bits, rhs_sign = stmt.rhs.shape()
if lhs_bits == rhs_bits:
rhs_sigspec = self.rhs_compiler(stmt.rhs)
else:
# In RTLIL, LHS and RHS of assignment must have exactly same width.
rhs_sigspec = self.rhs_compiler.match_shape(
stmt.rhs, lhs_bits, rhs_sign)
self._case.assign(self.lhs_compiler(stmt.lhs), rhs_sigspec)
def on_Switch(self, stmt):
with self._case.switch(self.rhs_compiler(stmt.test)) as switch:
for value, stmts in stmt.cases.items():
with self.case(switch, value):
self.on_statements(stmts)
def on_statement(self, stmt):
try:
super().on_statement(stmt)
except LegalizeValue as legalize:
with self._case.switch(self.rhs_compiler(legalize.value)) as switch:
bits, sign = legalize.value.shape()
tests = ["{:0{}b}".format(v, bits) for v in legalize.branches]
tests[-1] = "-" * bits
for branch, test in zip(legalize.branches, tests):
with self.case(switch, test):
branch_value = ast.Const(branch, (bits, sign))
with self.state.expand_to(legalize.value, branch_value):
super().on_statement(stmt)
def on_statements(self, stmts):
for stmt in stmts:
self.on_statement(stmt)
def convert_fragment(builder, fragment, name, top):
if isinstance(fragment, ir.Instance):
port_map = OrderedDict()
for port_name, value in fragment.named_ports.items():
port_map["\\{}".format(port_name)] = value
return "\\{}".format(fragment.type), port_map
with builder.module(name or "anonymous", attrs={"top": 1} if top else {}) as module:
compiler_state = _ValueCompilerState(module)
rhs_compiler = _RHSValueCompiler(compiler_state)
lhs_compiler = _LHSValueCompiler(compiler_state)
stmt_compiler = _StatementCompiler(compiler_state, rhs_compiler, lhs_compiler)
# Register all signals driven in the current fragment. This must be done first, as it
# affects further codegen; e.g. whether sig$next signals will be generated and used.
for domain, signal in fragment.iter_drivers():
compiler_state.add_driven(signal, sync=domain is not None)
# Transform all signals used as ports in the current fragment eagerly and outside of
# any hierarchy, to make sure they get sensible (non-prefixed) names.
for signal in fragment.ports:
compiler_state.add_port(signal, fragment.ports[signal])
compiler_state.resolve_curr(signal)
# Transform all clocks clocks and resets eagerly and outside of any hierarchy, to make
# sure they get sensible (non-prefixed) names. This does not affect semantics.
for domain, _ in fragment.iter_sync():
cd = fragment.domains[domain]
compiler_state.resolve_curr(cd.clk)
if cd.rst is not None:
compiler_state.resolve_curr(cd.rst)
# Transform all subfragments to their respective cells. Transforming signals connected
# to their ports into wires eagerly makes sure they get sensible (prefixed with submodule
# name) names.
for subfragment, sub_name in fragment.subfragments:
sub_name, sub_port_map = \
convert_fragment(builder, subfragment, top=False, name=sub_name)
module.cell(sub_name, name=sub_name, ports={
port: compiler_state.resolve_curr(signal, prefix=sub_name)
for port, signal in sub_port_map.items()
}, params=subfragment.parameters)
with module.process() as process:
with process.case() as case:
# For every signal in comb domain, assign \sig$next to the reset value.
# For every signal in sync domains, assign \sig$next to the current value (\sig).
for domain, signal in fragment.iter_drivers():
if domain is None:
prev_value = ast.Const(signal.reset, signal.nbits)
else:
prev_value = signal
case.assign(lhs_compiler(signal), rhs_compiler(prev_value))
# Convert statements into decision trees.
stmt_compiler._case = case
stmt_compiler(fragment.statements)
# For every signal in the sync domain, assign \sig's initial value (which will end up
# as the \init reg attribute) to the reset value.
with process.sync("init") as sync:
for domain, signal in fragment.iter_sync():
wire_curr, wire_next = compiler_state.resolve(signal)
sync.update(wire_curr, rhs_compiler(ast.Const(signal.reset, signal.nbits)))
# For every signal in every domain, assign \sig to \sig$next. The sensitivity list,
# however, differs between domains: for comb domains, it is `always`, for sync domains
# with sync reset, it is `posedge clk`, for sync domains with async rest it is
# `posedge clk or posedge rst`.
for domain, signals in fragment.drivers.items():
triggers = []
if domain is None:
triggers.append(("always",))
else:
cd = fragment.domains[domain]
triggers.append(("posedge", compiler_state.resolve_curr(cd.clk)))
if cd.async_reset:
triggers.append(("posedge", compiler_state.resolve_curr(cd.rst)))
for trigger in triggers:
with process.sync(*trigger) as sync:
for signal in signals:
wire_curr, wire_next = compiler_state.resolve(signal)
sync.update(wire_curr, wire_next)
# Finally, collect the names we've given to our ports in RTLIL, and correlate these with
# the signals represented by these ports. If we are a submodule, this will be necessary
# to create a cell for us in the parent module.
port_map = OrderedDict()
for signal in fragment.ports:
port_map[compiler_state.resolve_curr(signal)] = signal
return module.name, port_map
def convert(fragment, name="top", **kwargs):
fragment = fragment.prepare(**kwargs)
builder = _Builder()
convert_fragment(builder, fragment, name=name, top=True)
return str(builder)