amaranth/nmigen/vendor/lattice_machxo2.py
whitequark 6cee280407 plat, vendor: systematically escape net and file names in Tcl.
Before this commit, there was only occasional quoting of some names
used in any Tcl files. (I'm not sure what I was thinking.)

After this commit, any substs that may include Tcl special characters
are escaped. This does not include build names (which are explicitly
restricted to ASCII to avoid this problem), or attribute names (which
are chosen from a predefined set). Ideally we'd use a more principled
approach but Jinja2 does not support custom escaping mechanisms.

Note that Vivado restricts clock names to a more restrictive set that
forbids using Tcl special characters even when escaped.

Fixes #375.
2020-05-02 10:41:18 +00:00

390 lines
16 KiB
Python

from abc import abstractproperty
from ..hdl import *
from ..build import *
__all__ = ["LatticeMachXO2Platform"]
class LatticeMachXO2Platform(TemplatedPlatform):
"""
Required tools:
* ``pnmainc``
* ``ddtcmd``
The environment is populated by running the script specified in the environment variable
``NMIGEN_ENV_Diamond``, if present.
Available overrides:
* ``script_project``: inserts commands before ``prj_project save`` in Tcl script.
* ``script_after_export``: inserts commands after ``prj_run Export`` in Tcl script.
* ``add_preferences``: inserts commands at the end of the LPF file.
* ``add_constraints``: inserts commands at the end of the XDC file.
Build products:
* ``{{name}}_impl/{{name}}_impl.htm``: consolidated log.
* ``{{name}}.jed``: JEDEC fuse file.
* ``{{name}}.svf``: JTAG programming vector.
"""
toolchain = "Diamond"
device = abstractproperty()
package = abstractproperty()
speed = abstractproperty()
grade = "C" # [C]ommercial, [I]ndustrial
required_tools = [
"yosys",
"pnmainc",
"ddtcmd"
]
file_templates = {
**TemplatedPlatform.build_script_templates,
"build_{{name}}.sh": r"""
# {{autogenerated}}
set -e{{verbose("x")}}
if [ -z "$BASH" ] ; then exec /bin/bash "$0" "$@"; fi
if [ -n "${{platform._toolchain_env_var}}" ]; then
bindir=$(dirname "${{platform._toolchain_env_var}}")
. "${{platform._toolchain_env_var}}"
fi
{{emit_commands("sh")}}
""",
"{{name}}.v": r"""
/* {{autogenerated}} */
{{emit_verilog()}}
""",
"{{name}}.debug.v": r"""
/* {{autogenerated}} */
{{emit_debug_verilog()}}
""",
"{{name}}.tcl": r"""
prj_project new -name {{name}} -impl impl -impl_dir top_impl \
-dev {{platform.device}}-{{platform.speed}}{{platform.package}}{{platform.grade}} \
-lpf {{name}}.lpf \
-synthesis synplify
{% for file in platform.iter_extra_files(".v", ".sv", ".vhd", ".vhdl") -%}
prj_src add {{file|tcl_escape}}
{% endfor %}
prj_src add {{name}}.v
prj_impl option top {{name}}
prj_src add {{name}}.sdc
{{get_override("script_project")|default("# (script_project placeholder)")}}
prj_project save
prj_run Synthesis -impl impl -forceAll
prj_run Translate -impl impl -forceAll
prj_run Map -impl impl -forceAll
prj_run PAR -impl impl -forceAll
prj_run Export -impl impl -forceAll -task Jedecgen
{{get_override("script_after_export")|default("# (script_after_export placeholder)")}}
""",
"{{name}}.lpf": r"""
# {{autogenerated}}
BLOCK ASYNCPATHS;
BLOCK RESETPATHS;
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
LOCATE COMP "{{port_name}}" SITE "{{pin_name}}";
{% if attrs -%}
IOBUF PORT "{{port_name}}"
{%- for key, value in attrs.items() %} {{key}}={{value}}{% endfor %};
{% endif %}
{% endfor %}
{{get_override("add_preferences")|default("# (add_preferences placeholder)")}}
""",
"{{name}}.sdc": r"""
{% for net_signal, port_signal, frequency in platform.iter_clock_constraints() -%}
{% if port_signal is not none -%}
create_clock -name {{port_signal.name|tcl_escape}} -period {{1000000000/frequency}} [get_ports {{port_signal.name|tcl_escape}}]
{% else -%}
create_clock -name {{net_signal.name|tcl_escape}} -period {{1000000000/frequency}} [get_nets {{net_signal|hierarchy("/")|tcl_escape}}]
{% endif %}
{% endfor %}
{{get_override("add_constraints")|default("# (add_constraints placeholder)")}}
""",
}
command_templates = [
# These don't have any usable command-line option overrides.
r"""
{{invoke_tool("pnmainc")}}
{{name}}.tcl
""",
r"""
{{invoke_tool("ddtcmd")}}
-oft -jed
-dev {{platform.device}}-{{platform.speed}}{{platform.package}}{{platform.grade}}
-if {{name}}_impl/{{name}}_impl.jed -of {{name}}.jed
""",
r"""
{{invoke_tool("ddtcmd")}}
-oft -svfsingle -revd -op "FLASH Erase,Program,Verify"
-if {{name}}_impl/{{name}}_impl.jed -of {{name}}.svf
""",
]
def create_missing_domain(self, name):
# Lattice MachXO2 devices have two global set/reset signals: PUR, which is driven at
# startup by the configuration logic and unconditionally resets every storage element,
# and GSR, which is driven by user logic and each storage element may be configured as
# affected or unaffected by GSR. PUR is purely asynchronous, so even though it is
# a low-skew global network, its deassertion may violate a setup/hold constraint with
# relation to a user clock. To avoid this, a GSR/SGSR instance should be driven
# synchronized to user clock.
if name == "sync" and self.default_clk is not None:
clk_i = self.request(self.default_clk).i
if self.default_rst is not None:
rst_i = self.request(self.default_rst).i
else:
rst_i = Const(0)
gsr0 = Signal()
gsr1 = Signal()
m = Module()
# There is no end-of-startup signal on MachXO2, but PUR is released after IOB enable,
# so a simple reset synchronizer (with PUR as the asynchronous reset) does the job.
m.submodules += [
Instance("FD1S3AX", p_GSR="DISABLED", i_CK=clk_i, i_D=~rst_i, o_Q=gsr0),
Instance("FD1S3AX", p_GSR="DISABLED", i_CK=clk_i, i_D=gsr0, o_Q=gsr1),
# Although we already synchronize the reset input to user clock, SGSR has dedicated
# clock routing to the center of the FPGA; use that just in case it turns out to be
# more reliable. (None of this is documented.)
Instance("SGSR", i_CLK=clk_i, i_GSR=gsr1),
]
# GSR implicitly connects to every appropriate storage element. As such, the sync
# domain is reset-less; domains driven by other clocks would need to have dedicated
# reset circuitry or otherwise meet setup/hold constraints on their own.
m.domains += ClockDomain("sync", reset_less=True)
m.d.comb += ClockSignal("sync").eq(clk_i)
return m
_single_ended_io_types = [
"PCI33", "LVTTL33", "LVCMOS33", "LVCMOS25", "LVCMOS18", "LVCMOS15", "LVCMOS12",
"LVCMOS25R33", "LVCMOS18R33", "LVCMOS18R25", "LVCMOS15R33", "LVCMOS15R25", "LVCMOS12R33",
"LVCMOS12R25", "LVCMOS10R33", "LVCMOS10R25", "SSTL25_I", "SSTL25_II", "SSTL18_I",
"SSTL18_II", "HSTL18_I", "HSTL18_II",
]
_differential_io_types = [
"LVDS25", "LVDS25E", "RSDS25", "RSDS25E", "BLVDS25", "BLVDS25E", "MLVDS25", "MLVDS25E",
"LVPECL33", "LVPECL33E", "SSTL25D_I", "SSTL25D_II", "SSTL18D_I", "SSTL18D_II",
"HSTL18D_I", "HSTL18D_II", "LVTTL33D", "LVCMOS33D", "LVCMOS25D", "LVCMOS18D", "LVCMOS15D",
"LVCMOS12D", "MIPI",
]
def should_skip_port_component(self, port, attrs, component):
# On ECP5, a differential IO is placed by only instantiating an IO buffer primitive at
# the PIOA or PIOC location, which is always the non-inverting pin.
if attrs.get("IO_TYPE", "LVCMOS25") in self._differential_io_types and component == "n":
return True
return False
def _get_xdr_buffer(self, m, pin, *, i_invert=False, o_invert=False):
def get_ireg(clk, d, q):
for bit in range(len(q)):
m.submodules += Instance("IFS1P3DX",
i_SCLK=clk,
i_SP=Const(1),
i_CD=Const(0),
i_D=d[bit],
o_Q=q[bit]
)
def get_oreg(clk, d, q):
for bit in range(len(q)):
m.submodules += Instance("OFS1P3DX",
i_SCLK=clk,
i_SP=Const(1),
i_CD=Const(0),
i_D=d[bit],
o_Q=q[bit]
)
def get_iddr(sclk, d, q0, q1):
for bit in range(len(d)):
m.submodules += Instance("IDDRXE",
i_SCLK=sclk,
i_RST=Const(0),
i_D=d[bit],
o_Q0=q0[bit], o_Q1=q1[bit]
)
def get_oddr(sclk, d0, d1, q):
for bit in range(len(q)):
m.submodules += Instance("ODDRXE",
i_SCLK=sclk,
i_RST=Const(0),
i_D0=d0[bit], i_D1=d1[bit],
o_Q=q[bit]
)
def get_ineg(z, invert):
if invert:
a = Signal.like(z, name_suffix="_n")
m.d.comb += z.eq(~a)
return a
else:
return z
def get_oneg(a, invert):
if invert:
z = Signal.like(a, name_suffix="_n")
m.d.comb += z.eq(~a)
return z
else:
return a
if "i" in pin.dir:
if pin.xdr < 2:
pin_i = get_ineg(pin.i, i_invert)
elif pin.xdr == 2:
pin_i0 = get_ineg(pin.i0, i_invert)
pin_i1 = get_ineg(pin.i1, i_invert)
if "o" in pin.dir:
if pin.xdr < 2:
pin_o = get_oneg(pin.o, o_invert)
elif pin.xdr == 2:
pin_o0 = get_oneg(pin.o0, o_invert)
pin_o1 = get_oneg(pin.o1, o_invert)
i = o = t = None
if "i" in pin.dir:
i = Signal(pin.width, name="{}_xdr_i".format(pin.name))
if "o" in pin.dir:
o = Signal(pin.width, name="{}_xdr_o".format(pin.name))
if pin.dir in ("oe", "io"):
t = Signal(1, name="{}_xdr_t".format(pin.name))
if pin.xdr == 0:
if "i" in pin.dir:
i = pin_i
if "o" in pin.dir:
o = pin_o
if pin.dir in ("oe", "io"):
t = ~pin.oe
elif pin.xdr == 1:
# Note that currently nextpnr will not pack an FF (*FS1P3DX) into the PIO.
if "i" in pin.dir:
get_ireg(pin.i_clk, i, pin_i)
if "o" in pin.dir:
get_oreg(pin.o_clk, pin_o, o)
if pin.dir in ("oe", "io"):
get_oreg(pin.o_clk, ~pin.oe, t)
elif pin.xdr == 2:
if "i" in pin.dir:
get_iddr(pin.i_clk, i, pin_i0, pin_i1)
if "o" in pin.dir:
get_oddr(pin.o_clk, pin_o0, pin_o1, o)
if pin.dir in ("oe", "io"):
# It looks like Diamond will not pack an OREG as a tristate register in a DDR PIO.
# It is not clear what is the recommended set of primitives for this task.
# Similarly, nextpnr will not pack anything as a tristate register in a DDR PIO.
get_oreg(pin.o_clk, ~pin.oe, t)
else:
assert False
return (i, o, t)
def get_input(self, pin, port, attrs, invert):
self._check_feature("single-ended input", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert)
for bit in range(len(port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IB",
i_I=port[bit],
o_O=i[bit]
)
return m
def get_output(self, pin, port, attrs, invert):
self._check_feature("single-ended output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(len(port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OB",
i_I=o[bit],
o_O=port[bit]
)
return m
def get_tristate(self, pin, port, attrs, invert):
self._check_feature("single-ended tristate", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(len(port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBZ",
i_T=t,
i_I=o[bit],
o_O=port[bit]
)
return m
def get_input_output(self, pin, port, attrs, invert):
self._check_feature("single-ended input/output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert)
for bit in range(len(port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("BB",
i_T=t,
i_I=o[bit],
o_O=i[bit],
io_B=port[bit]
)
return m
def get_diff_input(self, pin, p_port, n_port, attrs, invert):
self._check_feature("differential input", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert)
for bit in range(len(p_port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IB",
i_I=p_port[bit],
o_O=i[bit]
)
return m
def get_diff_output(self, pin, p_port, n_port, attrs, invert):
self._check_feature("differential output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(len(p_port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OB",
i_I=o[bit],
o_O=p_port[bit],
)
return m
def get_diff_tristate(self, pin, p_port, n_port, attrs, invert):
self._check_feature("differential tristate", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, o_invert=invert)
for bit in range(len(p_port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBZ",
i_T=t,
i_I=o[bit],
o_O=p_port[bit],
)
return m
def get_diff_input_output(self, pin, p_port, n_port, attrs, invert):
self._check_feature("differential input/output", pin, attrs,
valid_xdrs=(0, 1, 2), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, i_invert=invert, o_invert=invert)
for bit in range(len(p_port)):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("BB",
i_T=t,
i_I=o[bit],
o_O=i[bit],
io_B=p_port[bit],
)
return m
# CDC primitives are not currently specialized for MachXO2.