amaranth/nmigen/vendor/xilinx.py

1061 lines
43 KiB
Python
Raw Normal View History

from abc import abstractproperty
from ..hdl import *
from ..lib.cdc import ResetSynchronizer
from ..build import *
__all__ = ["XilinxPlatform"]
class XilinxPlatform(TemplatedPlatform):
"""
Vivado toolchain
----------------
Required tools:
* ``vivado``
The environment is populated by running the script specified in the environment variable
``NMIGEN_ENV_Vivado``, if present.
Available overrides:
* ``script_after_read``: inserts commands after ``read_xdc`` in Tcl script.
* ``script_after_synth``: inserts commands after ``synth_design`` in Tcl script.
* ``script_after_place``: inserts commands after ``place_design`` in Tcl script.
* ``script_after_route``: inserts commands after ``route_design`` in Tcl script.
* ``script_before_bitstream``: inserts commands before ``write_bitstream`` in Tcl script.
* ``script_after_bitstream``: inserts commands after ``write_bitstream`` in Tcl script.
* ``add_constraints``: inserts commands in XDC file.
* ``vivado_opts``: adds extra options for ``vivado``.
Build products:
* ``{{name}}.log``: Vivado log.
* ``{{name}}_timing_synth.rpt``: Vivado report.
* ``{{name}}_utilization_hierarchical_synth.rpt``: Vivado report.
* ``{{name}}_utilization_synth.rpt``: Vivado report.
* ``{{name}}_utilization_hierarchical_place.rpt``: Vivado report.
* ``{{name}}_utilization_place.rpt``: Vivado report.
* ``{{name}}_io.rpt``: Vivado report.
* ``{{name}}_control_sets.rpt``: Vivado report.
* ``{{name}}_clock_utilization.rpt``: Vivado report.
* ``{{name}}_route_status.rpt``: Vivado report.
* ``{{name}}_drc.rpt``: Vivado report.
* ``{{name}}_methodology.rpt``: Vivado report.
* ``{{name}}_timing.rpt``: Vivado report.
* ``{{name}}_power.rpt``: Vivado report.
* ``{{name}}_route.dcp``: Vivado design checkpoint.
* ``{{name}}.bit``: binary bitstream with metadata.
* ``{{name}}.bin``: binary bitstream.
ISE toolchain
-------------
Required tools:
* ``xst``
* ``ngdbuild``
* ``map``
* ``par``
* ``bitgen``
The environment is populated by running the script specified in the environment variable
``NMIGEN_ENV_ISE``, if present.
Available overrides:
* ``script_after_run``: inserts commands after ``run`` in XST script.
* ``add_constraints``: inserts commands in UCF file.
* ``xst_opts``: adds extra options for ``xst``.
* ``ngdbuild_opts``: adds extra options for ``ngdbuild``.
* ``map_opts``: adds extra options for ``map``.
* ``par_opts``: adds extra options for ``par``.
* ``bitgen_opts``: adds extra and overrides default options for ``bitgen``;
default options: ``-g Compress``.
Build products:
* ``{{name}}.srp``: synthesis report.
* ``{{name}}.ngc``: synthesized RTL.
* ``{{name}}.bld``: NGDBuild log.
* ``{{name}}.ngd``: design database.
* ``{{name}}_map.map``: MAP log.
* ``{{name}}_map.mrp``: mapping report.
* ``{{name}}_map.ncd``: mapped netlist.
* ``{{name}}.pcf``: physical constraints.
* ``{{name}}_par.par``: PAR log.
* ``{{name}}_par_pad.txt``: I/O usage report.
* ``{{name}}_par.ncd``: place and routed netlist.
* ``{{name}}.drc``: DRC report.
* ``{{name}}.bgn``: BitGen log.
* ``{{name}}.bit``: binary bitstream with metadata.
* ``{{name}}.bin``: raw binary bitstream.
Symbiflow toolchain
-------------------
Required tools:
* ``symbiflow_synth``
* ``symbiflow_pack``
* ``symbiflow_place``
* ``symbiflow_route``
* ``symbiflow_write_fasm``
* ``symbiflow_write_bitstream``
The environment is populated by running the script specified in the environment variable
``NMIGEN_ENV_Symbiflow``, if present.
Available overrides:
* ``add_constraints``: inserts commands in XDC file.
"""
toolchain = None # selected when creating platform
device = abstractproperty()
package = abstractproperty()
speed = abstractproperty()
@property
def _part(self):
if self.family in {"ultrascale", "ultrascaleplus"}:
return "{}-{}-{}".format(self.device, self.package, self.speed)
else:
return "{}{}-{}".format(self.device, self.package, self.speed)
# Vivado templates
_vivado_required_tools = ["vivado"]
_vivado_file_templates = {
**TemplatedPlatform.build_script_templates,
"build_{{name}}.sh": r"""
# {{autogenerated}}
set -e{{verbose("x")}}
if [ -z "$BASH" ] ; then exec /bin/bash "$0" "$@"; fi
[ -n "${{platform._toolchain_env_var}}" ] && . "${{platform._toolchain_env_var}}"
{{emit_commands("sh")}}
""",
"{{name}}.v": r"""
/* {{autogenerated}} */
{{emit_verilog()}}
""",
"{{name}}.debug.v": r"""
/* {{autogenerated}} */
{{emit_debug_verilog()}}
""",
"{{name}}.tcl": r"""
# {{autogenerated}}
create_project -force -name {{name}} -part {{platform._part}}
{% for file in platform.iter_files(".v", ".sv", ".vhd", ".vhdl") -%}
add_files {{file|tcl_escape}}
{% endfor %}
add_files {{name}}.v
read_xdc {{name}}.xdc
{% for file in platform.iter_files(".xdc") -%}
read_xdc {{file|tcl_escape}}
{% endfor %}
{{get_override("script_after_read")|default("# (script_after_read placeholder)")}}
synth_design -top {{name}}
foreach cell [get_cells -quiet -hier -filter {nmigen.vivado.false_path == "TRUE"}] {
set_false_path -to $cell
}
foreach cell [get_cells -quiet -hier -filter {nmigen.vivado.max_delay != ""}] {
set clock [get_clocks -of_objects \
[all_fanin -flat -startpoints_only [get_pin $cell/D]]]
if {[llength $clock] != 0} {
set_max_delay -datapath_only -from $clock \
-to [get_cells $cell] [get_property nmigen.vivado.max_delay $cell]
}
}
{{get_override("script_after_synth")|default("# (script_after_synth placeholder)")}}
report_timing_summary -file {{name}}_timing_synth.rpt
report_utilization -hierarchical -file {{name}}_utilization_hierarchical_synth.rpt
report_utilization -file {{name}}_utilization_synth.rpt
opt_design
place_design
{{get_override("script_after_place")|default("# (script_after_place placeholder)")}}
report_utilization -hierarchical -file {{name}}_utilization_hierarchical_place.rpt
report_utilization -file {{name}}_utilization_place.rpt
report_io -file {{name}}_io.rpt
report_control_sets -verbose -file {{name}}_control_sets.rpt
report_clock_utilization -file {{name}}_clock_utilization.rpt
route_design
{{get_override("script_after_route")|default("# (script_after_route placeholder)")}}
phys_opt_design
report_timing_summary -no_header -no_detailed_paths
write_checkpoint -force {{name}}_route.dcp
report_route_status -file {{name}}_route_status.rpt
report_drc -file {{name}}_drc.rpt
report_methodology -file {{name}}_methodology.rpt
report_timing_summary -datasheet -max_paths 10 -file {{name}}_timing.rpt
report_power -file {{name}}_power.rpt
{{get_override("script_before_bitstream")|default("# (script_before_bitstream placeholder)")}}
write_bitstream -force -bin_file {{name}}.bit
{{get_override("script_after_bitstream")|default("# (script_after_bitstream placeholder)")}}
quit
""",
"{{name}}.xdc": r"""
# {{autogenerated}}
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
set_property LOC {{pin_name}} [get_ports {{port_name|tcl_escape}}]
{% for attr_name, attr_value in attrs.items() -%}
set_property {{attr_name}} {{attr_value|tcl_escape}} [get_ports {{port_name|tcl_escape}}]
{% endfor %}
{% endfor %}
{% for net_signal, port_signal, frequency in platform.iter_clock_constraints() -%}
{% if port_signal is not none -%}
create_clock -name {{port_signal.name|ascii_escape}} -period {{1000000000/frequency}} [get_ports {{port_signal.name|tcl_escape}}]
{% else -%}
create_clock -name {{net_signal.name|ascii_escape}} -period {{1000000000/frequency}} [get_nets {{net_signal|hierarchy("/")|tcl_escape}}]
{% endif %}
{% endfor %}
{{get_override("add_constraints")|default("# (add_constraints placeholder)")}}
"""
}
_vivado_command_templates = [
r"""
{{invoke_tool("vivado")}}
{{verbose("-verbose")}}
{{get_override("vivado_opts")|options}}
-mode batch
-log {{name}}.log
-source {{name}}.tcl
"""
]
# ISE toolchain
_ise_required_tools = [
"xst",
"ngdbuild",
"map",
"par",
"bitgen",
]
_ise_file_templates = {
**TemplatedPlatform.build_script_templates,
"build_{{name}}.sh": r"""
# {{autogenerated}}
set -e{{verbose("x")}}
if [ -z "$BASH" ] ; then exec /bin/bash "$0" "$@"; fi
[ -n "${{platform._toolchain_env_var}}" ] && . "${{platform._toolchain_env_var}}"
{{emit_commands("sh")}}
""",
"{{name}}.v": r"""
/* {{autogenerated}} */
{{emit_verilog()}}
""",
"{{name}}.debug.v": r"""
/* {{autogenerated}} */
{{emit_debug_verilog()}}
""",
"{{name}}.prj": r"""
# {{autogenerated}}
{% for file in platform.iter_files(".vhd", ".vhdl") -%}
vhdl work {{file}}
{% endfor %}
{% for file in platform.iter_files(".v") -%}
verilog work {{file}}
{% endfor %}
verilog work {{name}}.v
""",
"{{name}}.xst": r"""
# {{autogenerated}}
run
-ifn {{name}}.prj
-ofn {{name}}.ngc
-top {{name}}
-use_new_parser yes
-p {{platform.device}}{{platform.package}}-{{platform.speed}}
{{get_override("script_after_run")|default("# (script_after_run placeholder)")}}
""",
"{{name}}.ucf": r"""
# {{autogenerated}}
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
{% set port_name = port_name|replace("[", "<")|replace("]", ">") -%}
NET "{{port_name}}" LOC={{pin_name}};
{% for attr_name, attr_value in attrs.items() -%}
NET "{{port_name}}" {{attr_name}}={{attr_value}};
{% endfor %}
{% endfor %}
{% for net_signal, port_signal, frequency in platform.iter_clock_constraints() -%}
NET "{{net_signal|hierarchy("/")}}" TNM_NET="PRD{{net_signal|hierarchy("/")}}";
TIMESPEC "TS{{net_signal|hierarchy("/")}}"=PERIOD "PRD{{net_signal|hierarchy("/")}}" {{1000000000/frequency}} ns HIGH 50%;
{% endfor %}
{{get_override("add_constraints")|default("# (add_constraints placeholder)")}}
"""
}
_ise_command_templates = [
r"""
{{invoke_tool("xst")}}
{{get_override("xst_opts")|options}}
-ifn {{name}}.xst
""",
r"""
{{invoke_tool("ngdbuild")}}
{{quiet("-quiet")}}
{{verbose("-verbose")}}
{{get_override("ngdbuild_opts")|options}}
-uc {{name}}.ucf
{{name}}.ngc
""",
r"""
{{invoke_tool("map")}}
{{verbose("-detail")}}
{{get_override("map_opts")|default([])|options}}
-w
-o {{name}}_map.ncd
{{name}}.ngd
{{name}}.pcf
""",
r"""
{{invoke_tool("par")}}
{{get_override("par_opts")|default([])|options}}
-w
{{name}}_map.ncd
{{name}}_par.ncd
{{name}}.pcf
""",
r"""
{{invoke_tool("bitgen")}}
{{get_override("bitgen_opts")|default(["-g Compress"])|options}}
-w
-g Binary:Yes
{{name}}_par.ncd
{{name}}.bit
"""
]
# Symbiflow templates
_symbiflow_part_map = {
"xc7a35ticsg324-1L": "xc7a35tcsg324-1", # Arty-A7
}
_symbiflow_required_tools = [
"symbiflow_synth",
"symbiflow_pack",
"symbiflow_place",
"symbiflow_route",
"symbiflow_write_fasm",
"symbiflow_write_bitstream"
]
_symbiflow_file_templates = {
**TemplatedPlatform.build_script_templates,
"{{name}}.v": r"""
/* {{autogenerated}} */
{{emit_verilog()}}
""",
"{{name}}.debug.v": r"""
/* {{autogenerated}} */
{{emit_debug_verilog()}}
""",
"{{name}}.pcf": r"""
# {{autogenerated}}
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
set_io {{port_name}} {{pin_name}}
{% endfor %}
""",
"{{name}}.xdc": r"""
# {{autogenerated}}
{% for port_name, pin_name, attrs in platform.iter_port_constraints_bits() -%}
{% for attr_name, attr_value in attrs.items() -%}
set_property {{attr_name}} {{attr_value}} [get_ports {{port_name|tcl_escape}} }]
{% endfor %}
{% endfor %}
{{get_override("add_constraints")|default("# (add_constraints placeholder)")}}
""",
"{{name}}.sdc": r"""
# {{autogenerated}}
{% for net_signal, port_signal, frequency in platform.iter_clock_constraints() -%}
{% if port_signal is none -%}
create_clock -period {{1000000000/frequency}} {{net_signal.name|ascii_escape}}
{% endif %}
{% endfor %}
"""
}
_symbiflow_command_templates = [
r"""
{{invoke_tool("symbiflow_synth")}}
-t {{name}}
-v {% for file in platform.iter_files(".v", ".sv", ".vhd", ".vhdl") -%} {{file}} {% endfor %} {{name}}.v
-p {{platform._symbiflow_part_map.get(platform._part, platform._part)}}
-x {{name}}.xdc
""",
r"""
{{invoke_tool("symbiflow_pack")}}
-e {{name}}.eblif
-P {{platform._symbiflow_part_map.get(platform._part, platform._part)}}
-s {{name}}.sdc
""",
r"""
{{invoke_tool("symbiflow_place")}}
-e {{name}}.eblif
-p {{name}}.pcf
-n {{name}}.net
-P {{platform._symbiflow_part_map.get(platform._part, platform._part)}}
-s {{name}}.sdc
""",
r"""
{{invoke_tool("symbiflow_route")}}
-e {{name}}.eblif
-P {{platform._symbiflow_part_map.get(platform._part, platform._part)}}
-s {{name}}.sdc
""",
r"""
{{invoke_tool("symbiflow_write_fasm")}}
-e {{name}}.eblif
-P {{platform._symbiflow_part_map.get(platform._part, platform._part)}}
""",
r"""
{{invoke_tool("symbiflow_write_bitstream")}}
-f {{name}}.fasm
-p {{platform._symbiflow_part_map.get(platform._part, platform._part)}}
-b {{name}}.bit
"""
]
# Common logic
def __init__(self, *, toolchain=None):
super().__init__()
# Determine device family.
device = self.device.lower()
# Remove the prefix.
if device.startswith("xc"):
device = device[2:]
elif device.startswith("xa"):
device = device[2:]
elif device.startswith("xqr"):
device = device[3:]
elif device.startswith("xq"):
device = device[2:]
else:
raise ValueError("Device '{}' is not recognized".format(self.device))
# Do actual name matching.
if device.startswith("2vp"):
self.family = "virtex2p"
elif device.startswith("2v"):
self.family = "virtex2"
elif device.startswith("3sd"):
self.family = "spartan3adsp"
elif device.startswith("3s"):
if device.endswith("a"):
self.family = "spartan3a"
elif device.endswith("e"):
self.family = "spartan3e"
else:
self.family = "spartan3"
elif device.startswith("4v"):
self.family = "virtex4"
elif device.startswith("5v"):
self.family = "virtex5"
elif device.startswith("6v"):
self.family = "virtex6"
elif device.startswith("6s"):
self.family = "spartan6"
elif device.startswith("7"):
self.family = "series7"
elif device.startswith(("vu", "ku")):
if device.endswith("p"):
self.family = "ultrascaleplus"
else:
self.family = "ultrascale"
elif device.startswith(("zu", "u", "k26")):
self.family = "ultrascaleplus"
elif device.startswith(("v", "2s")):
# Match last to avoid conflict with ultrascale.
# Yes, Spartan 2 is the same thing as Virtex.
if device.endswith("e"):
self.family = "virtexe"
else:
self.family = "virtex"
ISE_FAMILIES = {
"virtex", "virtexe",
"virtex2", "virtex2p",
"spartan3", "spartan3e", "spartan3a", "spartan3adsp",
"virtex4",
"virtex5",
"virtex6",
"spartan6",
}
if toolchain is None:
if self.family in ISE_FAMILIES:
toolchain = "ISE"
else:
toolchain = "Vivado"
assert toolchain in ("Vivado", "ISE", "Symbiflow")
if toolchain == "Vivado":
if self.family in ISE_FAMILIES:
raise ValueError("Family '{}' is not supported by the Vivado toolchain, please use ISE instead".format(self.family))
elif toolchain == "ISE":
if self.family not in ISE_FAMILIES and self.family != "series7":
raise ValueError("Family '{}' is not supported by the ISE toolchain, please use Vivado instead".format(self.family))
elif toolchain == "Symbiflow":
if self.family != "series7":
raise ValueError("Family '{}' is not supported by the Symbiflow toolchain".format(self.family))
self.toolchain = toolchain
@property
def required_tools(self):
if self.toolchain == "Vivado":
return self._vivado_required_tools
if self.toolchain == "ISE":
return self._ise_required_tools
if self.toolchain == "Symbiflow":
return self._symbiflow_required_tools
assert False
@property
def file_templates(self):
if self.toolchain == "Vivado":
return self._vivado_file_templates
if self.toolchain == "ISE":
return self._ise_file_templates
if self.toolchain == "Symbiflow":
return self._symbiflow_file_templates
assert False
@property
def command_templates(self):
if self.toolchain == "Vivado":
return self._vivado_command_templates
if self.toolchain == "ISE":
return self._ise_command_templates
if self.toolchain == "Symbiflow":
return self._symbiflow_command_templates
assert False
def create_missing_domain(self, name):
# Xilinx devices have a global write enable (GWE) signal that asserted during configuraiton
# and deasserted once it ends. Because it is an asynchronous signal (GWE is driven by logic
# syncronous to configuration clock, which is not used by most designs), even though it is
# a low-skew global network, its deassertion may violate a setup/hold constraint with
# relation to a user clock. The recommended solution is to use a BUFGCE driven by the EOS
# signal (if available). For details, see:
# * https://www.xilinx.com/support/answers/44174.html
# * https://www.xilinx.com/support/documentation/white_papers/wp272.pdf
STARTUP_PRIMITIVE = {
"spartan6": "STARTUP_SPARTAN6",
"virtex4": "STARTUP_VIRTEX4",
"virtex5": "STARTUP_VIRTEX5",
"virtex6": "STARTUP_VIRTEX6",
"series7": "STARTUPE2",
"ultrascale": "STARTUPE3",
"ultrascaleplus": "STARTUPE3",
}
if self.family not in STARTUP_PRIMITIVE or self.toolchain == "Symbiflow":
# Spartan 3 and before lacks a STARTUP primitive with EOS output; use a simple ResetSynchronizer
# in that case, as is the default.
# Symbiflow does not support the STARTUPE2 primitive.
return super().create_missing_domain(name)
if name == "sync" and self.default_clk is not None:
clk_i = self.request(self.default_clk).i
if self.default_rst is not None:
rst_i = self.request(self.default_rst).i
m = Module()
ready = Signal()
m.submodules += Instance(STARTUP_PRIMITIVE[self.family], o_EOS=ready)
m.domains += ClockDomain("sync", reset_less=self.default_rst is None)
if self.toolchain != "Vivado":
m.submodules += Instance("BUFGCE", i_CE=ready, i_I=clk_i, o_O=ClockSignal("sync"))
elif self.family == "series7":
# Actually use BUFGCTRL configured as BUFGCE, since using BUFGCE causes
# sim/synth mismatches with Vivado 2019.2, and the suggested workaround
# (SIM_DEVICE parameter) breaks Vivado 2017.4.
m.submodules += Instance("BUFGCTRL",
p_SIM_DEVICE="7SERIES",
i_I0=clk_i, i_S0=C(1, 1), i_CE0=ready, i_IGNORE0=C(0, 1),
i_I1=C(1, 1), i_S1=C(0, 1), i_CE1=C(0, 1), i_IGNORE1=C(1, 1),
o_O=ClockSignal("sync")
)
else:
m.submodules += Instance("BUFGCE",
p_SIM_DEVICE="ULTRASCALE",
i_CE=ready,
i_I=clk_i,
o_O=ClockSignal("sync")
)
if self.default_rst is not None:
m.submodules.reset_sync = ResetSynchronizer(rst_i, domain="sync")
return m
def add_clock_constraint(self, clock, frequency):
super().add_clock_constraint(clock, frequency)
clock.attrs["keep"] = "TRUE"
def _get_xdr_buffer(self, m, pin, iostd, *, i_invert=False, o_invert=False):
XFDDR_FAMILIES = {
"virtex2",
"virtex2p",
"spartan3",
}
XDDR2_FAMILIES = {
"spartan3e",
"spartan3a",
"spartan3adsp",
"spartan6",
}
XDDR_FAMILIES = {
"virtex4",
"virtex5",
"virtex6",
"series7",
}
XDDRE1_FAMILIES = {
"ultrascale",
"ultrascaleplus",
}
def get_iob_dff(clk, d, q):
# SDR I/O is performed by packing a flip-flop into the pad IOB.
for bit in range(len(q)):
m.submodules += Instance("FDCE",
a_IOB="TRUE",
i_C=clk,
i_CE=Const(1),
i_CLR=Const(0),
i_D=d[bit],
o_Q=q[bit]
)
def get_dff(clk, d, q):
for bit in range(len(q)):
m.submodules += Instance("FDCE",
i_C=clk,
i_CE=Const(1),
i_CLR=Const(0),
i_D=d[bit],
o_Q=q[bit]
)
def get_ifddr(clk, io, q0, q1):
assert self.family in XFDDR_FAMILIES
for bit in range(len(q0)):
m.submodules += Instance("IFDDRCPE",
i_C0=clk, i_C1=~clk,
i_CE=Const(1),
i_CLR=Const(0), i_PRE=Const(0),
i_D=io[bit],
o_Q0=q0[bit], o_Q1=q1[bit]
)
def get_iddr2(clk, d, q0, q1, alignment):
assert self.family in XDDR2_FAMILIES
for bit in range(len(q0)):
m.submodules += Instance("IDDR2",
p_DDR_ALIGNMENT=alignment,
p_SRTYPE="ASYNC",
p_INIT_Q0=C(0, 1), p_INIT_Q1=C(0, 1),
i_C0=clk, i_C1=~clk,
i_CE=Const(1),
i_S=Const(0), i_R=Const(0),
i_D=d[bit],
o_Q0=q0[bit], o_Q1=q1[bit]
)
def get_iddr(clk, d, q1, q2):
assert self.family in XDDR_FAMILIES or self.family in XDDRE1_FAMILIES
for bit in range(len(q1)):
if self.family in XDDR_FAMILIES:
m.submodules += Instance("IDDR",
p_DDR_CLK_EDGE="SAME_EDGE_PIPELINED",
p_SRTYPE="ASYNC",
p_INIT_Q1=C(0, 1), p_INIT_Q2=C(0, 1),
i_C=clk,
i_CE=Const(1),
i_S=Const(0), i_R=Const(0),
i_D=d[bit],
o_Q1=q1[bit], o_Q2=q2[bit]
)
else:
m.submodules += Instance("IDDRE1",
p_DDR_CLK_EDGE="SAME_EDGE_PIPELINED",
p_IS_C_INVERTED=C(0, 1), p_IS_CB_INVERTED=C(1, 1),
i_C=clk, i_CB=clk,
i_R=Const(0),
i_D=d[bit],
o_Q1=q1[bit], o_Q2=q2[bit]
)
def get_fddr(clk, d0, d1, q):
for bit in range(len(q)):
if self.family in XFDDR_FAMILIES:
m.submodules += Instance("FDDRCPE",
i_C0=clk, i_C1=~clk,
i_CE=Const(1),
i_PRE=Const(0), i_CLR=Const(0),
i_D0=d0[bit], i_D1=d1[bit],
o_Q=q[bit]
)
else:
m.submodules += Instance("ODDR2",
p_DDR_ALIGNMENT="NONE",
p_SRTYPE="ASYNC",
p_INIT=C(0, 1),
i_C0=clk, i_C1=~clk,
i_CE=Const(1),
i_S=Const(0), i_R=Const(0),
i_D0=d0[bit], i_D1=d1[bit],
o_Q=q[bit]
)
def get_oddr(clk, d1, d2, q):
for bit in range(len(q)):
if self.family in XDDR2_FAMILIES:
m.submodules += Instance("ODDR2",
p_DDR_ALIGNMENT="C0",
p_SRTYPE="ASYNC",
p_INIT=C(0, 1),
i_C0=clk, i_C1=~clk,
i_CE=Const(1),
i_S=Const(0), i_R=Const(0),
i_D0=d1[bit], i_D1=d2[bit],
o_Q=q[bit]
)
elif self.family in XDDR_FAMILIES:
m.submodules += Instance("ODDR",
p_DDR_CLK_EDGE="SAME_EDGE",
p_SRTYPE="ASYNC",
p_INIT=C(0, 1),
i_C=clk,
i_CE=Const(1),
i_S=Const(0), i_R=Const(0),
i_D1=d1[bit], i_D2=d2[bit],
o_Q=q[bit]
)
elif self.family in XDDRE1_FAMILIES:
m.submodules += Instance("ODDRE1",
p_SRVAL=C(0, 1),
i_C=clk,
i_SR=Const(0),
i_D1=d1[bit], i_D2=d2[bit],
o_Q=q[bit]
)
def get_ineg(y, invert):
if invert:
a = Signal.like(y, name_suffix="_n")
m.d.comb += y.eq(~a)
return a
else:
return y
def get_oneg(a, invert):
if invert:
y = Signal.like(a, name_suffix="_n")
m.d.comb += y.eq(~a)
return y
else:
return a
if "i" in pin.dir:
if pin.xdr < 2:
pin_i = get_ineg(pin.i, i_invert)
elif pin.xdr == 2:
pin_i0 = get_ineg(pin.i0, i_invert)
pin_i1 = get_ineg(pin.i1, i_invert)
if "o" in pin.dir:
if pin.xdr < 2:
pin_o = get_oneg(pin.o, o_invert)
elif pin.xdr == 2:
pin_o0 = get_oneg(pin.o0, o_invert)
pin_o1 = get_oneg(pin.o1, o_invert)
i = o = t = None
if "i" in pin.dir:
i = Signal(pin.width, name="{}_xdr_i".format(pin.name))
if "o" in pin.dir:
o = Signal(pin.width, name="{}_xdr_o".format(pin.name))
if pin.dir in ("oe", "io"):
t = Signal(1, name="{}_xdr_t".format(pin.name))
if pin.xdr == 0:
if "i" in pin.dir:
i = pin_i
if "o" in pin.dir:
o = pin_o
if pin.dir in ("oe", "io"):
t = ~pin.oe
elif pin.xdr == 1:
if "i" in pin.dir:
get_iob_dff(pin.i_clk, i, pin_i)
if "o" in pin.dir:
get_iob_dff(pin.o_clk, pin_o, o)
if pin.dir in ("oe", "io"):
get_iob_dff(pin.o_clk, ~pin.oe, t)
elif pin.xdr == 2:
# On Spartan 3E/3A, the situation with DDR registers is messy: while the hardware
# supports same-edge alignment, it does so by borrowing the resources of the other
# pin in the differential pair (if any). Since we cannot be sure if the other pin
# is actually unused (or if the pin is even part of a differential pair in the first
# place), we only use the hardware alignment feature in two cases:
#
# - differential inputs (since the other pin's input registers will be unused)
# - true differential outputs (since they use only one pin's output registers,
# as opposed to pseudo-differential outputs that use both)
TRUE_DIFF_S3EA = {
"LVDS_33", "LVDS_25",
"MINI_LVDS_33", "MINI_LVDS_25",
"RSDS_33", "RSDS_25",
"PPDS_33", "PPDS_25",
"TMDS_33",
}
DIFF_S3EA = TRUE_DIFF_S3EA | {
"DIFF_HSTL_I",
"DIFF_HSTL_III",
"DIFF_HSTL_I_18",
"DIFF_HSTL_II_18",
"DIFF_HSTL_III_18",
"DIFF_SSTL3_I",
"DIFF_SSTL3_II",
"DIFF_SSTL2_I",
"DIFF_SSTL2_II",
"DIFF_SSTL18_I",
"DIFF_SSTL18_II",
"BLVDS_25",
}
if "i" in pin.dir:
if self.family in XFDDR_FAMILIES:
# First-generation input DDR register: basically just two FFs with opposite
# clocks. Add a register on both outputs, so that they enter fabric on
# the same clock edge, adding one cycle of latency.
i0_ff = Signal.like(pin_i0, name_suffix="_ff")
i1_ff = Signal.like(pin_i1, name_suffix="_ff")
get_dff(pin.i_clk, i0_ff, pin_i0)
get_dff(pin.i_clk, i1_ff, pin_i1)
get_iob_dff(pin.i_clk, i, i0_ff)
get_iob_dff(~pin.i_clk, i, i1_ff)
elif self.family in XDDR2_FAMILIES:
if self.family == 'spartan6' or iostd in DIFF_S3EA:
# Second-generation input DDR register: hw realigns i1 to positive clock edge,
# but also misaligns it with i0 input. Re-register first input before it
# enters fabric. This allows both inputs to enter fabric on the same clock
# edge, and adds one cycle of latency.
i0_ff = Signal.like(pin_i0, name_suffix="_ff")
get_dff(pin.i_clk, i0_ff, pin_i0)
get_iddr2(pin.i_clk, i, i0_ff, pin_i1, "C0")
else:
# No extra register available for hw alignment, use extra registers.
i0_ff = Signal.like(pin_i0, name_suffix="_ff")
i1_ff = Signal.like(pin_i1, name_suffix="_ff")
get_dff(pin.i_clk, i0_ff, pin_i0)
get_dff(pin.i_clk, i1_ff, pin_i1)
get_iddr2(pin.i_clk, i, i0_ff, i1_ff, "NONE")
else:
# Third-generation input DDR register: does all of the above on its own.
get_iddr(pin.i_clk, i, pin_i0, pin_i1)
if "o" in pin.dir:
if self.family in XFDDR_FAMILIES or self.family == "spartan3e" or (self.family.startswith("spartan3a") and iostd not in TRUE_DIFF_S3EA):
# For this generation, we need to realign o1 input ourselves.
o1_ff = Signal.like(pin_o1, name_suffix="_ff")
get_dff(pin.o_clk, pin_o1, o1_ff)
get_fddr(pin.o_clk, pin_o0, o1_ff, o)
else:
get_oddr(pin.o_clk, pin_o0, pin_o1, o)
if pin.dir in ("oe", "io"):
if self.family == "spartan6":
get_oddr(pin.o_clk, ~pin.oe, ~pin.oe, t)
else:
get_iob_dff(pin.o_clk, ~pin.oe, t)
else:
assert False
return (i, o, t)
def _get_valid_xdrs(self):
if self.family in {"virtex", "virtexe"}:
return (0, 1)
else:
return (0, 1, 2)
def get_input(self, pin, port, attrs, invert):
self._check_feature("single-ended input", pin, attrs,
valid_xdrs=self._get_valid_xdrs(), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, attrs.get("IOSTANDARD"), i_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IBUF",
i_I=port.io[bit],
o_O=i[bit]
)
return m
def get_output(self, pin, port, attrs, invert):
self._check_feature("single-ended output", pin, attrs,
valid_xdrs=self._get_valid_xdrs(), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, attrs.get("IOSTANDARD"), o_invert=invert)
if self.toolchain != "Symbiflow":
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUF",
i_I=o[bit],
o_O=port.io[bit]
)
else:
m.d.comb += port.eq(self._invert_if(invert, o))
return m
def get_tristate(self, pin, port, attrs, invert):
if self.toolchain == "Symbiflow":
return super().get_tristate(pin, port, attrs, invert)
self._check_feature("single-ended tristate", pin, attrs,
valid_xdrs=self._get_valid_xdrs(), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, attrs.get("IOSTANDARD"), o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFT",
i_T=t,
i_I=o[bit],
o_O=port.io[bit]
)
return m
def get_input_output(self, pin, port, attrs, invert):
if self.toolchain == "Symbiflow":
return super().get_input_output(pin, port, attrs, invert)
self._check_feature("single-ended input/output", pin, attrs,
valid_xdrs=self._get_valid_xdrs(), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, attrs.get("IOSTANDARD"), i_invert=invert, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IOBUF",
i_T=t,
i_I=o[bit],
o_O=i[bit],
io_IO=port.io[bit]
)
return m
def get_diff_input(self, pin, port, attrs, invert):
if self.toolchain == "Symbiflow":
return super().get_diff_input(pin, port, attrs, invert)
self._check_feature("differential input", pin, attrs,
valid_xdrs=self._get_valid_xdrs(), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, attrs.get("IOSTANDARD", "LVDS_25"), i_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IBUFDS",
i_I=port.p[bit], i_IB=port.n[bit],
o_O=i[bit]
)
return m
def get_diff_output(self, pin, port, attrs, invert):
if self.toolchain == "Symbiflow":
return super().get_diff_output(pin, port, attrs, invert)
self._check_feature("differential output", pin, attrs,
valid_xdrs=self._get_valid_xdrs(), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, attrs.get("IOSTANDARD", "LVDS_25"), o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFDS",
i_I=o[bit],
o_O=port.p[bit], o_OB=port.n[bit]
)
return m
def get_diff_tristate(self, pin, port, attrs, invert):
if self.toolchain == "Symbiflow":
return super().get_diff_tristate(pin, port, attrs, invert)
self._check_feature("differential tristate", pin, attrs,
valid_xdrs=self._get_valid_xdrs(), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, attrs.get("IOSTANDARD", "LVDS_25"), o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("OBUFTDS",
i_T=t,
i_I=o[bit],
o_O=port.p[bit], o_OB=port.n[bit]
)
return m
def get_diff_input_output(self, pin, port, attrs, invert):
if self.toolchain == "Symbiflow":
return super().get_diff_input_output(pin, port, attrs, invert)
self._check_feature("differential input/output", pin, attrs,
valid_xdrs=self._get_valid_xdrs(), valid_attrs=True)
m = Module()
i, o, t = self._get_xdr_buffer(m, pin, attrs.get("IOSTANDARD", "LVDS_25"), i_invert=invert, o_invert=invert)
for bit in range(pin.width):
m.submodules["{}_{}".format(pin.name, bit)] = Instance("IOBUFDS",
i_T=t,
i_I=o[bit],
o_O=i[bit],
io_IO=port.p[bit], io_IOB=port.n[bit]
)
return m
# The synchronizer implementations below apply two separate but related timing constraints.
#
# First, the ASYNC_REG attribute prevents inference of shift registers from synchronizer FFs,
# and constraints the FFs to be placed as close as possible, ideally in one CLB. This attribute
# only affects the synchronizer FFs themselves.
#
# Second, for Vivado only, the nmigen.vivado.false_path or nmigen.vivado.max_delay attribute
# affects the path into the synchronizer. If maximum input delay is specified, a datapath-only
# maximum delay constraint is applied, limiting routing delay (and therefore skew) at
# the synchronizer input. Otherwise, a false path constraint is used to omit the input path
# from the timing analysis.
def get_ff_sync(self, ff_sync):
m = Module()
flops = [Signal(ff_sync.i.shape(), name="stage{}".format(index),
reset=ff_sync._reset, reset_less=ff_sync._reset_less,
attrs={"ASYNC_REG": "TRUE"})
for index in range(ff_sync._stages)]
if self.toolchain == "Vivado":
if ff_sync._max_input_delay is None:
flops[0].attrs["nmigen.vivado.false_path"] = "TRUE"
else:
flops[0].attrs["nmigen.vivado.max_delay"] = str(ff_sync._max_input_delay * 1e9)
elif ff_sync._max_input_delay is not None:
raise NotImplementedError("Platform '{}' does not support constraining input delay "
"for FFSynchronizer"
.format(type(self).__name__))
for i, o in zip((ff_sync.i, *flops), flops):
m.d[ff_sync._o_domain] += o.eq(i)
m.d.comb += ff_sync.o.eq(flops[-1])
return m
def get_async_ff_sync(self, async_ff_sync):
m = Module()
m.domains += ClockDomain("async_ff", async_reset=True, local=True)
flops = [Signal(1, name="stage{}".format(index), reset=1,
attrs={"ASYNC_REG": "TRUE"})
for index in range(async_ff_sync._stages)]
if self.toolchain == "Vivado":
if async_ff_sync._max_input_delay is None:
flops[0].attrs["nmigen.vivado.false_path"] = "TRUE"
else:
flops[0].attrs["nmigen.vivado.max_delay"] = str(async_ff_sync._max_input_delay * 1e9)
elif async_ff_sync._max_input_delay is not None:
raise NotImplementedError("Platform '{}' does not support constraining input delay "
"for AsyncFFSynchronizer"
.format(type(self).__name__))
for i, o in zip((0, *flops), flops):
m.d.async_ff += o.eq(i)
if async_ff_sync._edge == "pos":
m.d.comb += ResetSignal("async_ff").eq(async_ff_sync.i)
else:
m.d.comb += ResetSignal("async_ff").eq(~async_ff_sync.i)
m.d.comb += [
ClockSignal("async_ff").eq(ClockSignal(async_ff_sync._o_domain)),
async_ff_sync.o.eq(flops[-1])
]
return m