This change achieves two related goals.
First, default_rst is no longer assumed to be synchronous to
default_clk, which is the safer option, since it can be connected to
e.g. buttons on some evaluation boards.
Second, since the power-on / configuration reset is inherently
asynchronous to any user clock, the default create_missing_domain()
behavior is to use a reset synchronizer with `0` as input. Since,
like all reset synchronizers, it uses Signal(reset=1) for its
synchronization stages, after power-on reset it keeps its subordinate
clock domain in reset, and releases it after fabric flops start
toggling.
The latter change is helpful to architectures that lack an end-of-
configuration signal, i.e. most of them. ECP5 was already using
a similar scheme (and is not changed here). Xilinx devices with EOS
use EOS to drive a BUFGMUX, which is more efficient than using
a global reset when the design does not need one; Xilinx devices
without EOS use the new scheme. iCE40 requires a post-configuration
timer because of BRAM silicon bug, and was changed to add a reset
synchronizer if user clock is provided.
Although useful for debugging, most external tools often complain
about such attributes (with notable exception of Vivado). As such,
it is better to emit Verilog with these attributes into a separate
file such as `design.debug.v` and only emit the attributes that were
explicitly placed by the user to `design.v`.
This still leaves the (*init*) attribute. See #220 for details.
It's not practical to detect tools within the toolchain environment
for various reasons, so just assume the tools are there if the user
says they are.
Before this commit, the tools would be searched outside the toolchain
environment, which of course would always fail for Vivado, ISE, etc.
Platform.prepare() was completely broken after addition of local
clock domains, and only really worked before by a series of
accidents because there was a circular dependency between creation
of missing domains, fragment preparation, and insertion of pin
subfragments.
This commit untangles the dependency by adding a separate public
method Fragment.create_missing_domains(), used in build.plat.
It also makes DomainCollector consider both used and defined domains,
such that it will work on fragments before domain propagation, since
create_missing_domains() can be called by user code before prepare().
The fragment driving missing clock domain is not flattened anymore,
because flattening does not work well combined with local domains.
On Xilinx devices, flip-flops are reset to their initial state with
an internal global reset network, but this network is deasserted
asynchronously to user clocks. Use BUFGCE and STARTUP to hold default
clock low until after GWE is deasserted.
Right now an array is expected in any _opts overrides, and if it is
actually a string (because it is passed via an environment variable,
usually), awkwardness results as each character is joined with ` `.
Fixes#130.
This adds the Clock() build DSL element, and adds a resource manager
function add_clock_constraint() that takes a Pin or a Signal.
Note that not all platforms, in particular not any nextpnr platforms
at the moment, can add constraints on arbitrary signals.
Fixes#86.
Although a dir="oe" pin is generally equivalent to dir="io" pin with
the i* signal(s) disconnected, they are not equivalent, because some
pins may not be able to support input buffers at all, either because
there are no input buffers, or because the input buffers are consumed
by some other resource.
E.g. this can happen on iCE40 when the input buffer is consumed by
a PLL.
This is necessary because on some platforms, like iCE40, extras
become parameters on an IO primitive, since the constraint file
format is not expressive enough for all of them.