amaranth/nmigen/back/rtlil.py
whitequark 4d6ad28f59 back.verilog: remove $verilog_initial_trigger after proc_prune.
$verilog_initial_trigger was introduced to work around Verilog
simulation semantics issues with `always @*` statements that only
have constants on RHS and in conditions. Unfortunately, it breaks
Verilator. Since the combination of proc_prune and proc_clean passes
eliminates all such statements, it can be simply removed when both
of these passes are available, currently on Yosys master. After
Yosys 0.10 is released, we can get rid of $verilog_initial_trigger
entirely.
2019-10-28 10:11:41 +00:00

1010 lines
38 KiB
Python

import io
import textwrap
from collections import defaultdict, OrderedDict
from contextlib import contextmanager
from .._utils import bits_for, flatten
from ..hdl import ast, rec, ir, mem, xfrm
__all__ = ["convert", "convert_fragment"]
class _Namer:
def __init__(self):
super().__init__()
self._anon = 0
self._index = 0
self._names = set()
def anonymous(self):
name = "U$${}".format(self._anon)
assert name not in self._names
self._anon += 1
return name
def _make_name(self, name, local):
if name is None:
self._index += 1
name = "${}".format(self._index)
elif not local and name[0] not in "\\$":
name = "\\{}".format(name)
while name in self._names:
self._index += 1
name = "{}${}".format(name, self._index)
self._names.add(name)
return name
class _BufferedBuilder:
def __init__(self):
super().__init__()
self._buffer = io.StringIO()
def __str__(self):
return self._buffer.getvalue()
def _append(self, fmt, *args, **kwargs):
self._buffer.write(fmt.format(*args, **kwargs))
class _ProxiedBuilder:
def _append(self, *args, **kwargs):
self.rtlil._append(*args, **kwargs)
class _AttrBuilder:
_escape_map = str.maketrans({
"\"": "\\\"",
"\\": "\\\\",
"\t": "\\t",
"\r": "\\r",
"\n": "\\n",
})
def _attribute(self, name, value, *, indent=0):
if isinstance(value, str):
self._append("{}attribute \\{} \"{}\"\n",
" " * indent, name, value.translate(self._escape_map))
else:
self._append("{}attribute \\{} {}\n",
" " * indent, name, int(value))
def _attributes(self, attrs, *, src=None, **kwargs):
for name, value in attrs.items():
self._attribute(name, value, **kwargs)
if src:
self._attribute("src", src, **kwargs)
class _Builder(_Namer, _BufferedBuilder):
def module(self, name=None, attrs={}):
name = self._make_name(name, local=False)
return _ModuleBuilder(self, name, attrs)
class _ModuleBuilder(_Namer, _BufferedBuilder, _AttrBuilder):
def __init__(self, rtlil, name, attrs):
super().__init__()
self.rtlil = rtlil
self.name = name
self.attrs = {"generator": "nMigen"}
self.attrs.update(attrs)
def __enter__(self):
self._attributes(self.attrs)
self._append("module {}\n", self.name)
return self
def __exit__(self, *args):
self._append("end\n")
self.rtlil._buffer.write(str(self))
def wire(self, width, port_id=None, port_kind=None, name=None, attrs={}, src=""):
self._attributes(attrs, src=src, indent=1)
name = self._make_name(name, local=False)
if port_id is None:
self._append(" wire width {} {}\n", width, name)
else:
assert port_kind in ("input", "output", "inout")
self._append(" wire width {} {} {} {}\n", width, port_kind, port_id, name)
return name
def connect(self, lhs, rhs):
self._append(" connect {} {}\n", lhs, rhs)
def memory(self, width, size, name=None, attrs={}, src=""):
self._attributes(attrs, src=src, indent=1)
name = self._make_name(name, local=False)
self._append(" memory width {} size {} {}\n", width, size, name)
return name
def cell(self, kind, name=None, params={}, ports={}, attrs={}, src=""):
self._attributes(attrs, src=src, indent=1)
name = self._make_name(name, local=False)
self._append(" cell {} {}\n", kind, name)
for param, value in params.items():
if isinstance(value, str):
self._append(" parameter \\{} \"{}\"\n",
param, value.translate(self._escape_map))
elif isinstance(value, int):
self._append(" parameter \\{} {:d}\n",
param, value)
elif isinstance(value, float):
self._append(" parameter real \\{} \"{!r}\"\n",
param, value)
elif isinstance(value, ast.Const):
self._append(" parameter \\{} {}'{:b}\n",
param, len(value), value.value)
else:
assert False, "Bad parameter {!r}".format(value)
for port, wire in ports.items():
self._append(" connect {} {}\n", port, wire)
self._append(" end\n")
return name
def process(self, name=None, attrs={}, src=""):
name = self._make_name(name, local=True)
return _ProcessBuilder(self, name, attrs, src)
class _ProcessBuilder(_BufferedBuilder, _AttrBuilder):
def __init__(self, rtlil, name, attrs, src):
super().__init__()
self.rtlil = rtlil
self.name = name
self.attrs = {}
self.src = src
def __enter__(self):
self._attributes(self.attrs, src=self.src, indent=1)
self._append(" process {}\n", self.name)
return self
def __exit__(self, *args):
self._append(" end\n")
self.rtlil._buffer.write(str(self))
def case(self):
return _CaseBuilder(self, indent=2)
def sync(self, kind, cond=None):
return _SyncBuilder(self, kind, cond)
class _CaseBuilder(_ProxiedBuilder):
def __init__(self, rtlil, indent):
self.rtlil = rtlil
self.indent = indent
def __enter__(self):
return self
def __exit__(self, *args):
pass
def assign(self, lhs, rhs):
self._append("{}assign {} {}\n", " " * self.indent, lhs, rhs)
def switch(self, cond, attrs={}, src=""):
return _SwitchBuilder(self.rtlil, cond, attrs, src, self.indent)
class _SwitchBuilder(_ProxiedBuilder, _AttrBuilder):
def __init__(self, rtlil, cond, attrs, src, indent):
self.rtlil = rtlil
self.cond = cond
self.attrs = attrs
self.src = src
self.indent = indent
def __enter__(self):
self._attributes(self.attrs, src=self.src, indent=self.indent)
self._append("{}switch {}\n", " " * self.indent, self.cond)
return self
def __exit__(self, *args):
self._append("{}end\n", " " * self.indent)
def case(self, *values, attrs={}, src=""):
self._attributes(attrs, src=src, indent=self.indent + 1)
if values == ():
self._append("{}case\n", " " * (self.indent + 1))
else:
self._append("{}case {}\n", " " * (self.indent + 1),
", ".join("{}'{}".format(len(value), value) for value in values))
return _CaseBuilder(self.rtlil, self.indent + 2)
class _SyncBuilder(_ProxiedBuilder):
def __init__(self, rtlil, kind, cond):
self.rtlil = rtlil
self.kind = kind
self.cond = cond
def __enter__(self):
if self.cond is None:
self._append(" sync {}\n", self.kind)
else:
self._append(" sync {} {}\n", self.kind, self.cond)
return self
def __exit__(self, *args):
pass
def update(self, lhs, rhs):
self._append(" update {} {}\n", lhs, rhs)
def src(src_loc):
if src_loc is None:
return None
file, line = src_loc
return "{}:{}".format(file, line)
def srcs(src_locs):
return "|".join(sorted(filter(lambda x: x, map(src, src_locs))))
class LegalizeValue(Exception):
def __init__(self, value, branches, src_loc):
self.value = value
self.branches = list(branches)
self.src_loc = src_loc
class _ValueCompilerState:
def __init__(self, rtlil):
self.rtlil = rtlil
self.wires = ast.SignalDict()
self.driven = ast.SignalDict()
self.ports = ast.SignalDict()
self.anys = ast.ValueDict()
self.expansions = ast.ValueDict()
def add_driven(self, signal, sync):
self.driven[signal] = sync
def add_port(self, signal, kind):
assert kind in ("i", "o", "io")
if kind == "i":
kind = "input"
elif kind == "o":
kind = "output"
elif kind == "io":
kind = "inout"
self.ports[signal] = (len(self.ports), kind)
def resolve(self, signal, prefix=None):
if signal in self.wires:
return self.wires[signal]
if signal in self.ports:
port_id, port_kind = self.ports[signal]
else:
port_id = port_kind = None
if prefix is not None:
wire_name = "{}_{}".format(prefix, signal.name)
else:
wire_name = signal.name
wire_curr = self.rtlil.wire(width=signal.width, name=wire_name,
port_id=port_id, port_kind=port_kind,
attrs=signal.attrs,
src=src(signal.src_loc))
if signal in self.driven and self.driven[signal]:
wire_next = self.rtlil.wire(width=signal.width, name=wire_curr + "$next",
src=src(signal.src_loc))
else:
wire_next = None
self.wires[signal] = (wire_curr, wire_next)
return wire_curr, wire_next
def resolve_curr(self, signal, prefix=None):
wire_curr, wire_next = self.resolve(signal, prefix)
return wire_curr
def expand(self, value):
if not self.expansions:
return value
return self.expansions.get(value, value)
@contextmanager
def expand_to(self, value, expansion):
try:
assert value not in self.expansions
self.expansions[value] = expansion
yield
finally:
del self.expansions[value]
class _ValueCompiler(xfrm.ValueVisitor):
def __init__(self, state):
self.s = state
def on_unknown(self, value):
if value is None:
return None
else:
super().on_unknown(value)
def on_ClockSignal(self, value):
raise NotImplementedError # :nocov:
def on_ResetSignal(self, value):
raise NotImplementedError # :nocov:
def on_Sample(self, value):
raise NotImplementedError # :nocov:
def on_Initial(self, value):
raise NotImplementedError # :nocov:
def on_Record(self, value):
return self(ast.Cat(value.fields.values()))
def on_Cat(self, value):
return "{{ {} }}".format(" ".join(reversed([self(o) for o in value.parts])))
def _prepare_value_for_Slice(self, value):
raise NotImplementedError # :nocov:
def on_Slice(self, value):
if value.start == 0 and value.stop == len(value.value):
return self(value.value)
sigspec = self._prepare_value_for_Slice(value.value)
if value.start == value.stop:
return "{}"
elif value.start + 1 == value.stop:
return "{} [{}]".format(sigspec, value.start)
else:
return "{} [{}:{}]".format(sigspec, value.stop - 1, value.start)
def on_ArrayProxy(self, value):
index = self.s.expand(value.index)
if isinstance(index, ast.Const):
if index.value < len(value.elems):
elem = value.elems[index.value]
else:
elem = value.elems[-1]
return self.match_shape(elem, *value.shape())
else:
raise LegalizeValue(value.index, range(len(value.elems)), value.src_loc)
class _RHSValueCompiler(_ValueCompiler):
operator_map = {
(1, "~"): "$not",
(1, "-"): "$neg",
(1, "b"): "$reduce_bool",
(1, "r|"): "$reduce_or",
(1, "r&"): "$reduce_and",
(1, "r^"): "$reduce_xor",
(2, "+"): "$add",
(2, "-"): "$sub",
(2, "*"): "$mul",
(2, "//"): "$div",
(2, "%"): "$mod",
(2, "**"): "$pow",
(2, "<<"): "$sshl",
(2, ">>"): "$sshr",
(2, "&"): "$and",
(2, "^"): "$xor",
(2, "|"): "$or",
(2, "=="): "$eq",
(2, "!="): "$ne",
(2, "<"): "$lt",
(2, "<="): "$le",
(2, ">"): "$gt",
(2, ">="): "$ge",
(3, "m"): "$mux",
}
def on_value(self, value):
return super().on_value(self.s.expand(value))
def on_Const(self, value):
if isinstance(value.value, str):
return "{}'{}".format(value.width, value.value)
else:
value_twos_compl = value.value & ((1 << value.width) - 1)
return "{}'{:0{}b}".format(value.width, value_twos_compl, value.width)
def on_AnyConst(self, value):
if value in self.s.anys:
return self.s.anys[value]
res_bits, res_sign = value.shape()
res = self.s.rtlil.wire(width=res_bits, src=src(value.src_loc))
self.s.rtlil.cell("$anyconst", ports={
"\\Y": res,
}, params={
"WIDTH": res_bits,
}, src=src(value.src_loc))
self.s.anys[value] = res
return res
def on_AnySeq(self, value):
if value in self.s.anys:
return self.s.anys[value]
res_bits, res_sign = value.shape()
res = self.s.rtlil.wire(width=res_bits, src=src(value.src_loc))
self.s.rtlil.cell("$anyseq", ports={
"\\Y": res,
}, params={
"WIDTH": res_bits,
}, src=src(value.src_loc))
self.s.anys[value] = res
return res
def on_Signal(self, value):
wire_curr, wire_next = self.s.resolve(value)
return wire_curr
def on_Operator_unary(self, value):
arg, = value.operands
arg_bits, arg_sign = arg.shape()
res_bits, res_sign = value.shape()
res = self.s.rtlil.wire(width=res_bits, src=src(value.src_loc))
self.s.rtlil.cell(self.operator_map[(1, value.operator)], ports={
"\\A": self(arg),
"\\Y": res,
}, params={
"A_SIGNED": arg_sign,
"A_WIDTH": arg_bits,
"Y_WIDTH": res_bits,
}, src=src(value.src_loc))
return res
def match_shape(self, value, new_bits, new_sign):
if isinstance(value, ast.Const):
return self(ast.Const(value.value, ast.Shape(new_bits, new_sign)))
value_bits, value_sign = value.shape()
if new_bits <= value_bits:
return self(ast.Slice(value, 0, new_bits))
res = self.s.rtlil.wire(width=new_bits, src=src(value.src_loc))
self.s.rtlil.cell("$pos", ports={
"\\A": self(value),
"\\Y": res,
}, params={
"A_SIGNED": value_sign,
"A_WIDTH": value_bits,
"Y_WIDTH": new_bits,
}, src=src(value.src_loc))
return res
def on_Operator_binary(self, value):
lhs, rhs = value.operands
lhs_bits, lhs_sign = lhs.shape()
rhs_bits, rhs_sign = rhs.shape()
if lhs_sign == rhs_sign or value.operator in ("<<", ">>", "**"):
lhs_wire = self(lhs)
rhs_wire = self(rhs)
else:
lhs_sign = rhs_sign = True
lhs_wire = self.match_shape(lhs, lhs_bits, lhs_sign)
rhs_wire = self.match_shape(rhs, rhs_bits, rhs_sign)
res_bits, res_sign = value.shape()
res = self.s.rtlil.wire(width=res_bits, src=src(value.src_loc))
self.s.rtlil.cell(self.operator_map[(2, value.operator)], ports={
"\\A": lhs_wire,
"\\B": rhs_wire,
"\\Y": res,
}, params={
"A_SIGNED": lhs_sign,
"A_WIDTH": lhs_bits,
"B_SIGNED": rhs_sign,
"B_WIDTH": rhs_bits,
"Y_WIDTH": res_bits,
}, src=src(value.src_loc))
if value.operator in ("//", "%"):
# RTLIL leaves division by zero undefined, but we require it to return zero.
divmod_res = res
res = self.s.rtlil.wire(width=res_bits, src=src(value.src_loc))
self.s.rtlil.cell("$mux", ports={
"\\A": divmod_res,
"\\B": self(ast.Const(0, ast.Shape(res_bits, res_sign))),
"\\S": self(lhs == 0),
"\\Y": res,
}, params={
"WIDTH": res_bits
}, src=src(value.src_loc))
return res
def on_Operator_mux(self, value):
sel, val1, val0 = value.operands
val1_bits, val1_sign = val1.shape()
val0_bits, val0_sign = val0.shape()
res_bits, res_sign = value.shape()
val1_bits = val0_bits = res_bits = max(val1_bits, val0_bits, res_bits)
val1_wire = self.match_shape(val1, val1_bits, val1_sign)
val0_wire = self.match_shape(val0, val0_bits, val0_sign)
res = self.s.rtlil.wire(width=res_bits, src=src(value.src_loc))
self.s.rtlil.cell("$mux", ports={
"\\A": val0_wire,
"\\B": val1_wire,
"\\S": self(sel),
"\\Y": res,
}, params={
"WIDTH": res_bits
}, src=src(value.src_loc))
return res
def on_Operator(self, value):
if len(value.operands) == 1:
return self.on_Operator_unary(value)
elif len(value.operands) == 2:
return self.on_Operator_binary(value)
elif len(value.operands) == 3:
assert value.operator == "m"
return self.on_Operator_mux(value)
else:
raise TypeError # :nocov:
def _prepare_value_for_Slice(self, value):
if isinstance(value, (ast.Signal, ast.Slice, ast.Cat)):
sigspec = self(value)
else:
sigspec = self.s.rtlil.wire(len(value), src=src(value.src_loc))
self.s.rtlil.connect(sigspec, self(value))
return sigspec
def on_Part(self, value):
lhs, rhs = value.value, value.offset
if value.stride != 1:
rhs *= value.stride
lhs_bits, lhs_sign = lhs.shape()
rhs_bits, rhs_sign = rhs.shape()
res_bits, res_sign = value.shape()
res = self.s.rtlil.wire(width=res_bits, src=src(value.src_loc))
# Note: Verilog's x[o+:w] construct produces a $shiftx cell, not a $shift cell.
# However, Migen's semantics defines the out-of-range bits to be zero, so it is correct
# to use a $shift cell here instead, even though it produces less idiomatic Verilog.
self.s.rtlil.cell("$shift", ports={
"\\A": self(lhs),
"\\B": self(rhs),
"\\Y": res,
}, params={
"A_SIGNED": lhs_sign,
"A_WIDTH": lhs_bits,
"B_SIGNED": rhs_sign,
"B_WIDTH": rhs_bits,
"Y_WIDTH": res_bits,
}, src=src(value.src_loc))
return res
def on_Repl(self, value):
return "{{ {} }}".format(" ".join(self(value.value) for _ in range(value.count)))
class _LHSValueCompiler(_ValueCompiler):
def on_Const(self, value):
raise TypeError # :nocov:
def on_AnyConst(self, value):
raise TypeError # :nocov:
def on_AnySeq(self, value):
raise TypeError # :nocov:
def on_Operator(self, value):
raise TypeError # :nocov:
def match_shape(self, value, new_bits, new_sign):
value_bits, value_sign = value.shape()
if new_bits == value_bits:
return self(value)
elif new_bits < value_bits:
return self(ast.Slice(value, 0, new_bits))
else: # new_bits > value_bits
dummy_bits = new_bits - value_bits
dummy_wire = self.s.rtlil.wire(dummy_bits)
return "{{ {} {} }}".format(dummy_wire, self(value))
def on_Signal(self, value):
if value not in self.s.driven:
raise ValueError("No LHS wire for non-driven signal {}".format(repr(value)))
wire_curr, wire_next = self.s.resolve(value)
return wire_next or wire_curr
def _prepare_value_for_Slice(self, value):
assert isinstance(value, (ast.Signal, ast.Slice, ast.Cat, rec.Record))
return self(value)
def on_Part(self, value):
offset = self.s.expand(value.offset)
if isinstance(offset, ast.Const):
if offset.value == len(value.value):
dummy_wire = self.s.rtlil.wire(value.width)
return dummy_wire
return self(ast.Slice(value.value,
offset.value * value.stride,
offset.value * value.stride + value.width))
else:
# Only so many possible parts. The amount of branches is exponential; if value.offset
# is large (e.g. 32-bit wide), trying to naively legalize it is likely to exhaust
# system resources.
max_branches = len(value.value) // value.stride + 1
raise LegalizeValue(value.offset,
range((1 << len(value.offset)) // value.stride)[:max_branches],
value.src_loc)
def on_Repl(self, value):
raise TypeError # :nocov:
class _StatementCompiler(xfrm.StatementVisitor):
def __init__(self, state, rhs_compiler, lhs_compiler):
self.state = state
self.rhs_compiler = rhs_compiler
self.lhs_compiler = lhs_compiler
self._case = None
self._test_cache = {}
self._has_rhs = False
self._wrap_assign = False
@contextmanager
def case(self, switch, values, attrs={}, src=""):
try:
old_case = self._case
with switch.case(*values, attrs=attrs, src=src) as self._case:
yield
finally:
self._case = old_case
def _check_rhs(self, value):
if self._has_rhs or next(iter(value._rhs_signals()), None) is not None:
self._has_rhs = True
def on_Assign(self, stmt):
self._check_rhs(stmt.rhs)
lhs_bits, lhs_sign = stmt.lhs.shape()
rhs_bits, rhs_sign = stmt.rhs.shape()
if lhs_bits == rhs_bits:
rhs_sigspec = self.rhs_compiler(stmt.rhs)
else:
# In RTLIL, LHS and RHS of assignment must have exactly same width.
rhs_sigspec = self.rhs_compiler.match_shape(
stmt.rhs, lhs_bits, lhs_sign)
if self._wrap_assign:
# In RTLIL, all assigns are logically sequenced before all switches, even if they are
# interleaved in the source. In nMigen, the source ordering is used. To handle this
# mismatch, we wrap all assigns following a switch in a dummy switch.
with self._case.switch("{ }") as wrap_switch:
with wrap_switch.case() as wrap_case:
wrap_case.assign(self.lhs_compiler(stmt.lhs), rhs_sigspec)
else:
self._case.assign(self.lhs_compiler(stmt.lhs), rhs_sigspec)
def on_property(self, stmt):
self(stmt._check.eq(stmt.test))
self(stmt._en.eq(1))
en_wire = self.rhs_compiler(stmt._en)
check_wire = self.rhs_compiler(stmt._check)
self.state.rtlil.cell("$" + stmt._kind, ports={
"\\A": check_wire,
"\\EN": en_wire,
}, src=src(stmt.src_loc))
on_Assert = on_property
on_Assume = on_property
on_Cover = on_property
def on_Switch(self, stmt):
self._check_rhs(stmt.test)
if not self.state.expansions:
# We repeatedly translate the same switches over and over (see the LHSGroupAnalyzer
# related code below), and translating the switch test only once helps readability.
if stmt not in self._test_cache:
self._test_cache[stmt] = self.rhs_compiler(stmt.test)
test_sigspec = self._test_cache[stmt]
else:
# However, if the switch test contains an illegal value, then it may not be cached
# (since the illegal value will be repeatedly replaced with different constants), so
# don't cache anything in that case.
test_sigspec = self.rhs_compiler(stmt.test)
with self._case.switch(test_sigspec, src=src(stmt.src_loc)) as switch:
for values, stmts in stmt.cases.items():
case_attrs = {}
if values in stmt.case_src_locs:
case_attrs["src"] = src(stmt.case_src_locs[values])
if isinstance(stmt.test, ast.Signal) and stmt.test.decoder:
decoded_values = []
for value in values:
if "-" in value:
decoded_values.append("<multiple>")
else:
decoded_values.append(stmt.test.decoder(int(value, 2)))
case_attrs["nmigen.decoding"] = "|".join(decoded_values)
with self.case(switch, values, attrs=case_attrs):
self._wrap_assign = False
self.on_statements(stmts)
self._wrap_assign = True
def on_statement(self, stmt):
try:
super().on_statement(stmt)
except LegalizeValue as legalize:
with self._case.switch(self.rhs_compiler(legalize.value),
src=src(legalize.src_loc)) as switch:
shape = legalize.value.shape()
tests = ["{:0{}b}".format(v, shape.width) for v in legalize.branches]
if tests:
tests[-1] = "-" * shape.width
for branch, test in zip(legalize.branches, tests):
with self.case(switch, (test,)):
self._wrap_assign = False
branch_value = ast.Const(branch, shape)
with self.state.expand_to(legalize.value, branch_value):
self.on_statement(stmt)
self._wrap_assign = True
def on_statements(self, stmts):
for stmt in stmts:
self.on_statement(stmt)
def _convert_fragment(builder, fragment, name_map, hierarchy):
if isinstance(fragment, ir.Instance):
port_map = OrderedDict()
for port_name, (value, dir) in fragment.named_ports.items():
port_map["\\{}".format(port_name)] = value
if fragment.type[0] == "$":
return fragment.type, port_map
else:
return "\\{}".format(fragment.type), port_map
module_name = hierarchy[-1] or "anonymous"
module_attrs = OrderedDict()
if len(hierarchy) == 1:
module_attrs["top"] = 1
module_attrs["nmigen.hierarchy"] = ".".join(name or "anonymous" for name in hierarchy)
with builder.module(module_name, attrs=module_attrs) as module:
compiler_state = _ValueCompilerState(module)
rhs_compiler = _RHSValueCompiler(compiler_state)
lhs_compiler = _LHSValueCompiler(compiler_state)
stmt_compiler = _StatementCompiler(compiler_state, rhs_compiler, lhs_compiler)
verilog_trigger = None
verilog_trigger_sync_emitted = False
# Register all signals driven in the current fragment. This must be done first, as it
# affects further codegen; e.g. whether \sig$next signals will be generated and used.
for domain, signal in fragment.iter_drivers():
compiler_state.add_driven(signal, sync=domain is not None)
# Transform all signals used as ports in the current fragment eagerly and outside of
# any hierarchy, to make sure they get sensible (non-prefixed) names.
for signal in fragment.ports:
compiler_state.add_port(signal, fragment.ports[signal])
compiler_state.resolve_curr(signal)
# Transform all clocks clocks and resets eagerly and outside of any hierarchy, to make
# sure they get sensible (non-prefixed) names. This does not affect semantics.
for domain, _ in fragment.iter_sync():
cd = fragment.domains[domain]
compiler_state.resolve_curr(cd.clk)
if cd.rst is not None:
compiler_state.resolve_curr(cd.rst)
# Transform all subfragments to their respective cells. Transforming signals connected
# to their ports into wires eagerly makes sure they get sensible (prefixed with submodule
# name) names.
memories = OrderedDict()
for subfragment, sub_name in fragment.subfragments:
if not subfragment.ports:
continue
if sub_name is None:
sub_name = module.anonymous()
sub_params = OrderedDict()
if hasattr(subfragment, "parameters"):
for param_name, param_value in subfragment.parameters.items():
if isinstance(param_value, mem.Memory):
memory = param_value
if memory not in memories:
memories[memory] = module.memory(width=memory.width, size=memory.depth,
name=memory.name)
addr_bits = bits_for(memory.depth)
data_parts = []
data_mask = (1 << memory.width) - 1
for addr in range(memory.depth):
if addr < len(memory.init):
data = memory.init[addr] & data_mask
else:
data = 0
data_parts.append("{:0{}b}".format(data, memory.width))
module.cell("$meminit", ports={
"\\ADDR": rhs_compiler(ast.Const(0, addr_bits)),
"\\DATA": "{}'".format(memory.width * memory.depth) +
"".join(reversed(data_parts)),
}, params={
"MEMID": memories[memory],
"ABITS": addr_bits,
"WIDTH": memory.width,
"WORDS": memory.depth,
"PRIORITY": 0,
})
param_value = memories[memory]
sub_params[param_name] = param_value
sub_type, sub_port_map = \
_convert_fragment(builder, subfragment, name_map,
hierarchy=hierarchy + (sub_name,))
sub_ports = OrderedDict()
for port, value in sub_port_map.items():
if not isinstance(subfragment, ir.Instance):
for signal in value._rhs_signals():
compiler_state.resolve_curr(signal, prefix=sub_name)
sub_ports[port] = rhs_compiler(value)
module.cell(sub_type, name=sub_name, ports=sub_ports, params=sub_params,
attrs=subfragment.attrs)
# If we emit all of our combinatorial logic into a single RTLIL process, Verilog
# simulators will break horribly, because Yosys write_verilog transforms RTLIL processes
# into always @* blocks with blocking assignment, and that does not create delta cycles.
#
# Therefore, we translate the fragment as many times as there are independent groups
# of signals (a group is a transitive closure of signals that appear together on LHS),
# splitting them into many RTLIL (and thus Verilog) processes.
lhs_grouper = xfrm.LHSGroupAnalyzer()
lhs_grouper.on_statements(fragment.statements)
for group, group_signals in lhs_grouper.groups().items():
lhs_group_filter = xfrm.LHSGroupFilter(group_signals)
group_stmts = lhs_group_filter(fragment.statements)
with module.process(name="$group_{}".format(group)) as process:
with process.case() as case:
# For every signal in comb domain, assign \sig$next to the reset value.
# For every signal in sync domains, assign \sig$next to the current
# value (\sig).
for domain, signal in fragment.iter_drivers():
if signal not in group_signals:
continue
if domain is None:
prev_value = ast.Const(signal.reset, signal.width)
else:
prev_value = signal
case.assign(lhs_compiler(signal), rhs_compiler(prev_value))
# Convert statements into decision trees.
stmt_compiler._case = case
stmt_compiler._has_rhs = False
stmt_compiler._wrap_assign = False
stmt_compiler(group_stmts)
# Verilog `always @*` blocks will not run if `*` does not match anything, i.e.
# if the implicit sensitivity list is empty. We check this while translating,
# by looking for any signals on RHS. If there aren't any, we add some logic
# whose only purpose is to trigger Verilog simulators when it converts
# through RTLIL and to Verilog, by populating the sensitivity list.
#
# Unfortunately, while this workaround allows true (event-driven) Verilog
# simulators to work properly, and is universally ignored by synthesizers,
# Verilator rejects it.
#
# Running the Yosys proc_prune pass converts such pathological `always @*`
# blocks to `assign` statements, so this workaround can be removed completely
# once support for Yosys 0.9 is dropped.
if not stmt_compiler._has_rhs:
if verilog_trigger is None:
verilog_trigger = \
module.wire(1, name="$verilog_initial_trigger")
case.assign(verilog_trigger, verilog_trigger)
# For every signal in the sync domain, assign \sig's initial value (which will
# end up as the \init reg attribute) to the reset value.
with process.sync("init") as sync:
for domain, signal in fragment.iter_sync():
if signal not in group_signals:
continue
wire_curr, wire_next = compiler_state.resolve(signal)
sync.update(wire_curr, rhs_compiler(ast.Const(signal.reset, signal.width)))
# The Verilog simulator trigger needs to change at time 0, so if we haven't
# yet done that in some process, do it.
if verilog_trigger and not verilog_trigger_sync_emitted:
sync.update(verilog_trigger, "1'0")
verilog_trigger_sync_emitted = True
# For every signal in every sync domain, assign \sig to \sig$next. The sensitivity
# list, however, differs between domains: for domains with sync reset, it is
# `[pos|neg]edge clk`, for sync domains with async reset it is `[pos|neg]edge clk
# or posedge rst`.
for domain, signals in fragment.drivers.items():
if domain is None:
continue
signals = signals & group_signals
if not signals:
continue
cd = fragment.domains[domain]
triggers = []
triggers.append((cd.clk_edge + "edge", compiler_state.resolve_curr(cd.clk)))
if cd.async_reset:
triggers.append(("posedge", compiler_state.resolve_curr(cd.rst)))
for trigger in triggers:
with process.sync(*trigger) as sync:
for signal in signals:
wire_curr, wire_next = compiler_state.resolve(signal)
sync.update(wire_curr, wire_next)
# Any signals that are used but neither driven nor connected to an input port always
# assume their reset values. We need to assign the reset value explicitly, since only
# driven sync signals are handled by the logic above.
#
# Because this assignment is done at a late stage, a single Signal object can get assigned
# many times, once in each module it is used. This is a deliberate decision; the possible
# alternatives are to add ports for undriven signals (which requires choosing one module
# to drive it to reset value arbitrarily) or to replace them with their reset value (which
# removes valuable source location information).
driven = ast.SignalSet()
for domain, signals in fragment.iter_drivers():
driven.update(flatten(signal._lhs_signals() for signal in signals))
driven.update(fragment.iter_ports(dir="i"))
driven.update(fragment.iter_ports(dir="io"))
for subfragment, sub_name in fragment.subfragments:
driven.update(subfragment.iter_ports(dir="o"))
driven.update(subfragment.iter_ports(dir="io"))
for wire in compiler_state.wires:
if wire in driven:
continue
wire_curr, _ = compiler_state.wires[wire]
module.connect(wire_curr, rhs_compiler(ast.Const(wire.reset, wire.width)))
# Collect the names we've given to our ports in RTLIL, and correlate these with the signals
# represented by these ports. If we are a submodule, this will be necessary to create a cell
# for us in the parent module.
port_map = OrderedDict()
for signal in fragment.ports:
port_map[compiler_state.resolve_curr(signal)] = signal
# Finally, collect tha names we've given to each wire in RTLIL, and provide these to
# the caller, to allow manipulating them in the toolchain.
for signal in compiler_state.wires:
wire_name = compiler_state.resolve_curr(signal)
if wire_name.startswith("\\"):
wire_name = wire_name[1:]
name_map[signal] = hierarchy + (wire_name,)
return module.name, port_map
def convert_fragment(fragment, name="top"):
assert isinstance(fragment, ir.Fragment)
builder = _Builder()
name_map = ast.SignalDict()
_convert_fragment(builder, fragment, name_map, hierarchy=(name,))
return str(builder), name_map
def convert(elaboratable, name="top", platform=None, **kwargs):
fragment = ir.Fragment.get(elaboratable, platform).prepare(**kwargs)
il_text, name_map = convert_fragment(fragment, name)
return il_text