This is a somewhat obscure use case, but it is possible to use async
functions with pysim by carefully using @asyncio.coroutine. That is,
async functions can call back into pysim if they are declared in
a specific way:
@asyncio.coroutine
def do_something(self, value):
yield self.reg.eq(value)
which may then be called from elsewhere with:
async def test_case(self):
await do_something(0x1234)
This approach is unfortunately limited in that async functions
cannot yield directly. It should likely be improved by using async
generators, but supporting coroutines in pysim is unobtrustive and
allows existing code that made use of this feature in oMigen to work.
Platform.prepare() was completely broken after addition of local
clock domains, and only really worked before by a series of
accidents because there was a circular dependency between creation
of missing domains, fragment preparation, and insertion of pin
subfragments.
This commit untangles the dependency by adding a separate public
method Fragment.create_missing_domains(), used in build.plat.
It also makes DomainCollector consider both used and defined domains,
such that it will work on fragments before domain propagation, since
create_missing_domains() can be called by user code before prepare().
The fragment driving missing clock domain is not flattened anymore,
because flattening does not work well combined with local domains.
Because Fragment.prepare is not (currently) idempotent, it is useful
to be able to avoid calling it when converting. Even if it is made
idempotent, it can be slow on large designs, so it is advantageous
regardless of that.
Before this commit, the TransformedElaboratable of a CompatModule
would be ignored, and .get_fragment() would be used to retrieve
the CompatModule within.
After this commit, the finalization process is reworked to match
oMigen's finalization closely, and all submodules, native and compat,
are added in the same way that preserves applied transforms.
On Xilinx devices, flip-flops are reset to their initial state with
an internal global reset network, but this network is deasserted
asynchronously to user clocks. Use BUFGCE and STARTUP to hold default
clock low until after GWE is deasserted.
Previously changed in 27063a3b.
I haven't realized the .bin file is the same as the .bit file without
a small header. That means generating it is free and it's just easier
to let programming tools to be able to always rely on its existence.
Using 'x is legal RTLIL, in theory, but in practice it crashes Yosys
and when it doesn't, it causes Yosys to produce invalid Verilog.
Using a dummy wire is always safe and is not a major readability
issue as this is a rare corner case.
(It is not trivial to shorten the RHS in this case, because during
expansion of an ArrayProxy, match_shape() could be called in
a context far from the RHS handling logic.)