Shapes have long been a part of nMigen, but represented using tuples.
This commit adds a Shape class (using namedtuple for backwards
compatibility), and accepts anything castable to Shape (including
enums, ranges, etc) anywhere a tuple was accepted previously.
In addition, `signed(n)` and `unsigned(n)` are added as aliases for
`Shape(n, signed=True)` and `Shape(n, signed=False)`, transforming
code such as `Signal((8, True))` to `Signal(signed(8))`.
These aliases are also included in prelude.
Preparation for #225.
This can cause confusion:
* If the erroneous object is None, it is printed as 'None', which
appears as a string (and could be the result of converting None
to a string.)
* If the erroneous object is a string, it is printed as ''<val>'',
which is a rather strange combination of quotes.
Almost no code would specify Signal(_, name) as a positional argument
on purpose, but forgetting parens and accidentally placing signedness
into the name position is so common that we had a test for it.
Also, replace `bits, sign = x.shape()` with more idiomatic
`width, signed = x.shape()`.
This unifies all properties corresponding to `len(x)` to `x.width`.
(Not all values have a `width` property.)
Fixes#210.
This simplifies creation of related signals with nice names during
metaprogramming, e.g.
def make_ff(m, sig):
sig_ff = Signal.like(sig, name_suffix="_ff")
m.d.sync += sig_ff.eq(sig)
return sig_ff