This is a somewhat obscure use case, but it is possible to use async
functions with pysim by carefully using @asyncio.coroutine. That is,
async functions can call back into pysim if they are declared in
a specific way:
@asyncio.coroutine
def do_something(self, value):
yield self.reg.eq(value)
which may then be called from elsewhere with:
async def test_case(self):
await do_something(0x1234)
This approach is unfortunately limited in that async functions
cannot yield directly. It should likely be improved by using async
generators, but supporting coroutines in pysim is unobtrustive and
allows existing code that made use of this feature in oMigen to work.
Platform.prepare() was completely broken after addition of local
clock domains, and only really worked before by a series of
accidents because there was a circular dependency between creation
of missing domains, fragment preparation, and insertion of pin
subfragments.
This commit untangles the dependency by adding a separate public
method Fragment.create_missing_domains(), used in build.plat.
It also makes DomainCollector consider both used and defined domains,
such that it will work on fragments before domain propagation, since
create_missing_domains() can be called by user code before prepare().
The fragment driving missing clock domain is not flattened anymore,
because flattening does not work well combined with local domains.
Because Fragment.prepare is not (currently) idempotent, it is useful
to be able to avoid calling it when converting. Even if it is made
idempotent, it can be slow on large designs, so it is advantageous
regardless of that.
Before this commit, the TransformedElaboratable of a CompatModule
would be ignored, and .get_fragment() would be used to retrieve
the CompatModule within.
After this commit, the finalization process is reworked to match
oMigen's finalization closely, and all submodules, native and compat,
are added in the same way that preserves applied transforms.
On Xilinx devices, flip-flops are reset to their initial state with
an internal global reset network, but this network is deasserted
asynchronously to user clocks. Use BUFGCE and STARTUP to hold default
clock low until after GWE is deasserted.
Previously changed in 27063a3b.
I haven't realized the .bin file is the same as the .bit file without
a small header. That means generating it is free and it's just easier
to let programming tools to be able to always rely on its existence.
Using 'x is legal RTLIL, in theory, but in practice it crashes Yosys
and when it doesn't, it causes Yosys to produce invalid Verilog.
Using a dummy wire is always safe and is not a major readability
issue as this is a rare corner case.
(It is not trivial to shorten the RHS in this case, because during
expansion of an ArrayProxy, match_shape() could be called in
a context far from the RHS handling logic.)
The elaboratable is already likely driving the clk/rst signals in
some way appropriate for the platform; if we expose them as ports
nevertheless it will cause problems downstream.
This pattern usually produces an extremely hard to notice bug that
will usually break a design when it is triggered, but will also be
hidden unless the pathological value of a boolean switch is used.
Fixes#159.
This might help with propagation of locations through optimizer
passes, since not all of them take care to preserve cells at all,
but usually wires stay intact when possible.
Also fixes incorrect source location on value.part().
Before this commit, it was a print statement, and therefore, command
interpreter options like -Wignore did not affect it. There is no API
to access the warning filter list, so it was turned into a real
warning; and further, since Python 3.6, tracemalloc can be used
as a standard method to display traceback to allocation site instead
of the ad-hoc traceback logic that was used in Elaboratable before.
This gives particularly pathological results on IO buffers, like:
connect \D_OUT_0 \user_led_0_user_led_0__o
Since subfragment signals are name-prefixed because this works well
for signals propagated upwards across hierarchy, this is never
desirable for instances.
This is useful when most attributes in a large composite resource
are the same, but a few signals are different, and also when building
abstractions around resources.
Fixes#128.
This primarily fixes the problem with source location precision in
Module (which used to trace locations from __exit__ of the context
managers, by which point everything interesting has been lost), but
also improves memory port and control inserter source locations.
On the sample of examples/basic/*.py, the only incorrectly inferred
remaining location is clk pointing to hdl/mem.py:166.
This effectively reverts and reimplements half of commit 82903e49.
I was confused and did not realize that RTLIL does, in fact, have
attributes on switches.
After this commit, processes no longer have any source locations.
This is semantically fine, as the processes we emit are purely
artificial (because of LHS grouping), but I have not checked how
downstream tooling handles this.
Right now an array is expected in any _opts overrides, and if it is
actually a string (because it is passed via an environment variable,
usually), awkwardness results as each character is joined with ` `.
Fixes#130.